Skip to main content

Useful data crunching tools for pyarrow

Project description

Wombat

Wombat is Python libary for data crunching operations directly on the pyarrow.Table class, implemented in numpy & Cython. For convenience, function naming and behavior tries to replicates that of the Pandas API / Postgresql language.

Current features:

  • Engine API (lazy execution):
    • Operate directly on Pyarrow tables and datasets
    • Filter push-downs to optimize speed (only read subset of partitions)
    • Column tracking: only read subset of columns in data
    • Many operations (join, aggregate, filters, drop_duplicates, ...)
    • Numerical / logical operations on Column references
    • Caching based on hashed subtrees and reference counting
    • Visualize Plan using df.plot(file) (required graphviz)
  • Operation API (direct execution):
    • Data operations like joins, aggregations, filters & drop_duplicates
  • ML preprocessing API:
    • Categorical, numericals and one-hot processing directly on pa.Tables
    • Reusable: Serialize cleaners to JSON for using in inference
  • SQL API (under construction)
  • DB Management API (under construction)

Installation

Use the package manager pip to install wombat.

pip install wombat_db

Usage

See tests folder for more code examples

Dataframe API:

from wombat import Engine, head
import pyarrow.parquet as pq

# Create Engine and register_dataset/table
db = Engine(cache_memory=1e9)
db.register_dataset('skus', pq.ParquetDataset('data/skus'))
db.register_dataset('stock_current', pq.ParquetDataset('data/stock_current'))

# Selecting a table from db generates a Plan object
df = db['stock_current']

# Operations can be chained, adding nodes to the Plan
df = df.filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .aggregate(by=['option_key'], methods={'economical': 'sum', 'technical':'max'})

# Selecting strings from the Dataframe object, yields a column reference
df['stock'] = df['economical'].coalesce(0).least(df['technical']).greatest(0)

# A column reference can be used for numerical & logical operations
df['calculated'] = ((df['stock'] - 100) ** 2 / 5000 - df['stock']).clip(None, 5000)
df['check'] = ~(df['calculated'] == 5000) and (df['stock'] > 10000)

# We can filter using the boolean column as value
df[~(df['calculated'] == 5000)]

# Register UDF (pa.array -> pa.array)
db.register_udf('power', lambda arr: pa.array(arr.to_numpy() ** 2))
df['economical ** 2'] = df.udf('power', df['economical'])

# Rename columns
df.rename({'economical': 'economical_sum', 'technical': 'technical_max'})

# Select a subselection of columns (not necessary)
df.select(['option_key', 'economical_sum', 'calculated', 'check', 'economical ** 2'])

# You do not need to catch the return for chaining of operations
df.orderby('calculated', ascending=False)

# Collect is used to execute the plan
r = df.collect(verbose=True)
head(r)

# Cache is hit when same operations are repeated
# JOIN hits cache here, as filters are propagated down
df = db['stock_current'] \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .aggregate(by=['option_key'], methods={'economical': 'max', 'technical':'sum'}) \
    .orderby('economical', ascending=False)
r = df.collect(verbose=True)
head(r)

To Do's

  • Add unit tests using pytest
  • Add more join options (left, right, outer, full, cross)
  • Track schema in forward pass
  • Improve groupify operation for multi columns joins / groups
  • Serialize cache (to disk)
  • Serialize database (to disk)

Contributing

Pull requests are very welcome, however I believe in 80% of the utility in 20% of the code. I personally get lost reading the tranches of complicated code bases. If you would like to seriously improve this work, please let me know!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wombat_db-0.0.18.tar.gz (133.6 kB view hashes)

Uploaded Source

Built Distribution

wombat_db-0.0.18-cp38-cp38-macosx_10_15_x86_64.whl (332.9 kB view hashes)

Uploaded CPython 3.8 macOS 10.15+ x86-64

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page