Skip to main content

Decision Trees Ensembles

Project description

Woods: Decision Tree Ensembles

Currently implemented algorithms:

  1. Partially randomized decision tree (variance minimization).
  2. Gradient Boosting of decision trees (MSE minimization).
  3. Average ensemble of GBM.
  4. Deep Gradient Boosting (of Average ensembles of GBM).

TODO

  • Implement median-split, best-split decision tree;
  • Provide optional min&max search based on pre-sorting (find min&max of array[indices]);
  • Add different loss-functions, ranking support.

Installation

Build environment

  1. Install rustup.
  2. Set up nightly toolchain:
rustup toolchain install nightly
rustup default nightly

Install Python extension

Run setup.py:

python setup.py install --user

Note that --user option is used to install package locally.

Build documentation

Go to rust dir and run:

cargo doc --lib

Docs will be placed in target/doc/woods/index.html.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

woods-0.1.0.tar.gz (1.7 kB view details)

Uploaded Source

Built Distributions

woods-0.1.0-py3.6-macosx-10.9-x86_64.egg (363.1 kB view details)

Uploaded Source

woods-0.1.0-cp37-cp37m-win_amd64.whl (299.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

woods-0.1.0-cp36-cp36m-win32.whl (364.4 kB view details)

Uploaded CPython 3.6m Windows x86

woods-0.1.0-cp36-cp36m-macosx_10_15_x86_64.whl (364.4 kB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file woods-0.1.0.tar.gz.

File metadata

  • Download URL: woods-0.1.0.tar.gz
  • Upload date:
  • Size: 1.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.10

File hashes

Hashes for woods-0.1.0.tar.gz
Algorithm Hash digest
SHA256 6bf5f3a2db9d8fa41fe2ab14162f202339f5dcffd163929a15874b3341d1c523
MD5 4cb9974219c8e0167b0d4ba7f485826f
BLAKE2b-256 ffb0d09c5e0037d60a13709ee33d40806727977f581b6fc52d69079bc1ba5efa

See more details on using hashes here.

File details

Details for the file woods-0.1.0-py3.6-macosx-10.9-x86_64.egg.

File metadata

  • Download URL: woods-0.1.0-py3.6-macosx-10.9-x86_64.egg
  • Upload date:
  • Size: 363.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.10

File hashes

Hashes for woods-0.1.0-py3.6-macosx-10.9-x86_64.egg
Algorithm Hash digest
SHA256 ccaa80b0cbc795f0ccc1d2e711f7f697da94e00f27090f84e74e0de3a1dcdaf9
MD5 ccb9eb391b95b4b78610c7c596b0ac28
BLAKE2b-256 60a2922fcf53e8ef75b5148a88d0ea6b4e3fc0f5e01a5b4808b562ffd7ff468d

See more details on using hashes here.

File details

Details for the file woods-0.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: woods-0.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 299.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0.post20200209 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.4

File hashes

Hashes for woods-0.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7ab8d251bc2f4c2ddcd60588fed6b4c7f16b277b4f7e3fe85ef44e19e695545f
MD5 2b1ff0e73804e862ebe8018b03a7cc57
BLAKE2b-256 05172670f6784dcb592bf986d4d6147e453b78be371fb97fc84f3f46bd6103b4

See more details on using hashes here.

File details

Details for the file woods-0.1.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: woods-0.1.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 364.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.10

File hashes

Hashes for woods-0.1.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6f247c9fc175d01caaf38be0a9d497d344760dad31a375023438de87a0ed40b2
MD5 7b408121797f478d145293fe4c059bc1
BLAKE2b-256 17d5d8bbc70b72d9bb0705bc689436635386a13e3de1c7311f8141d55b76bf7f

See more details on using hashes here.

File details

Details for the file woods-0.1.0-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: woods-0.1.0-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 364.4 kB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.10

File hashes

Hashes for woods-0.1.0-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 98a89903a3c229249165842ae9727f96ae8b2fb1985bba743bb11e88d0a8329b
MD5 b0fad7694b3c408930b3457998b20e63
BLAKE2b-256 a1940410cda043778bbd2eb610c1931662d562c957fae0b137711859d41bf24b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page