Skip to main content

Word2Vec Keras Text Classifier

Project description

Word2Vec-Keras Text Classifier

Word2Vec-Keras is a simple Word2Vec and LSTM wrapper for text classification.

It combines Gensim Word2Vec model with Keras neural network trhough an Embedding layer as input. The Neural Network contains with LSTM layer

How install

pip3 install git+


from word2vec_keras import Word2VecKeras

model = Word2VecKeras()

model.train(x_train, y_train)

Train Word2Vec and Keras models. The Keras model has EralyStopping callback for stopping training after 6 epochs that not improve accuracy.

Train parameters:

  • x_train: list of raw sentences, no text cleaning will be perfomed
  • y_train: list of labels
  • w2v_size: (Default: 300) Word2Vec - Dimensionality of the word vectors
  • w2v_window: (Default: 5) Word2Vec - Maximum distance between the current and predicted word within a sentence.
  • w2v_min_count: (Default: 1) Word2Vec - Ignores all words with total frequency lower than this.
  • w2v_epochs: (Default: 100) Word2Vec - Number of iterations (epochs) over the corpus.
  • k_max_sequence_len: (Default: 500) Keras - Maximum length of all sequences
  • k_batch_size:(Default: 128) Keras - Number of samples per gradient update
  • k_epochs:(Default: 32) Keras - Number of epochs to train the model. An epoch is an iteration over the entire x and y data provided
  • k_lstm_neurons: (Default: 128) Keras - LSTM neurons per layer
  • k_hidden_layer_neurons: (Default: [128, 64, 32]) Keras - Number of Dense layers after LSTM layer.
  • verbose: (Default: 1) Keras- 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch


model.evaluate(x_test, y_test)

Evaluate model

Evaluate parameters:

  • x_test: list of raw sentences, no text cleaning will be perfomed
  • y_test: list of labels

Evaluate result:



model.predict('lorem ipsum dolor sit amet consectetur adipiscing elit...', threshold=0.6)

Make prediction of give text

Predict parameters:

  • x_text: Raw text, no text cleaning will be perfomed
  • threshold: (Default: 0.0) Cut-off threshold, if confidence il less than given value return OTHER as label

Predict result:

  • Return a dictionary with LABEL, CONFIDENCE and ELAPSED_TIME, i.e. {label: LABEL, confidence: CONFIDENCE, elapsed_time: TIME}

Save & load model'/path/model.tar.gz')

Save model as compressed tar.gz file that contains several utility pickles, keras model and Word2Vec model

model = Word2VecKeras()


Load model from saved tar.gz file


from sklearn.datasets import fetch_20newsgroups
from word2vec_keras import Word2VecKeras
from pprint import pprint

# fetch the dataset using scikit-learn
categories = ['alt.atheism', 'soc.religion.christian',
              '', '']

train_b = fetch_20newsgroups(subset='train',
                             categories=categories, shuffle=True, random_state=42)
test_b = fetch_20newsgroups(subset='test',
                            categories=categories, shuffle=True, random_state=42)

print('size of training set: %s' % (len(train_b['data'])))
print('size of validation set: %s' % (len(test_b['data'])))
print('classes: %s' % (train_b.target_names))

x_train =
y_train = [train_b.target_names[idx] for idx in]
x_test =
y_test = [train_b.target_names[idx] for idx in]

model = Word2VecKeras()
model.train(x_train, y_train)

pprint(model.evaluate(x_test, y_test))'./model.tar.gz')

Open In Colab

Project details

Release history Release notifications | RSS feed

This version


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

word2vec-keras-0.1.tar.gz (6.1 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page