Skip to main content

word predictor

Project description

wordpredict

This is a library that predicts words for ambiguous input.

Installation

pip install wordpredict

How to use

code

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

print("start user input")

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["i", "j", "k", "l"]
print(wp.update(input))

print("reset user input")
wp.reset()

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["m", "n", "o", "p"]
print(wp.update(input))

output

start user input
['for', 'e', 'from', 'he', 'has', 'have']
['he', 'get', 'here', 'her', 'help', 'few']
['help', 'held', 'felt', 'hell', 'hello', 'helps']
reset user input
['for', 'e', 'from', 'he', 'has', 'have']
['for', 'home', 'go', 'how', 'good', 'end']

corpus

e.g., https://www.kaggle.com/datasets/rtatman/english-word-frequency

execution time

%%timeit

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

1.42 s ± 83.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit

input = ["e", "f", "g", "h"]
wp.update(input)
input = ["e", "f", "g", "h"]
wp.update(input)
input = ["i", "j", "k", "l"]
wp.update(input)

8.34 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

note

autocomple was implemented with reference to https://doi.org/10.1145/3173574.3173755

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wordpredict-0.1.1.tar.gz (2.2 kB view details)

Uploaded Source

Built Distribution

wordpredict-0.1.1-py3-none-any.whl (2.8 kB view details)

Uploaded Python 3

File details

Details for the file wordpredict-0.1.1.tar.gz.

File metadata

  • Download URL: wordpredict-0.1.1.tar.gz
  • Upload date:
  • Size: 2.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.1.tar.gz
Algorithm Hash digest
SHA256 bf229ee5d22bc4985a6a27b66518b1248810c98defcf958c53cdeb3c08cc8bff
MD5 2bbc646a805bca4b8f6d9a6f6f5a2bd1
BLAKE2b-256 52f9ee6bfb3ae48ca6b2d95bfc610cebddc3dec49b5f9ca6cd6806ae699337f1

See more details on using hashes here.

File details

Details for the file wordpredict-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: wordpredict-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 2.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b0f65ee43325eb5adb64fcb0b83ce19819644e28a62850f5a3f68668039795dc
MD5 693e0a626af60158eab59c0c21fa9d4f
BLAKE2b-256 0a9fb0f5f86d8e11d72747cab55b1e6d4dc004652dbb1876267a501be2df7491

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page