Skip to main content

word predictor

Project description

wordpredict

This is a library that predicts words for ambiguous input.

Installation

pip install wordpredict

How to use

code

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

print("start user input")

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["i", "j", "k", "l"]
print(wp.update(input))

print("reset user input")
wp.reset()

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["m", "n", "o", "p"]
print(wp.update(input))

output

start user input
['for', 'e', 'from', 'he', 'has', 'have']
['he', 'get', 'here', 'her', 'help', 'few']
['help', 'held', 'felt', 'hell', 'hello', 'helps']
reset user input
['for', 'e', 'from', 'he', 'has', 'have']
['for', 'home', 'go', 'how', 'good', 'end']

corpus

e.g., https://www.kaggle.com/datasets/rtatman/english-word-frequency

execution time

%%timeit

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

1.42 s ± 83.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit

input = ["e", "f", "g", "h"]
wp.update(input)
input = ["e", "f", "g", "h"]
wp.update(input)
input = ["i", "j", "k", "l"]
wp.update(input)

8.34 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

note

autocomple was implemented with reference to https://doi.org/10.1145/3173574.3173755

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wordpredict-0.1.2.tar.gz (2.2 kB view details)

Uploaded Source

Built Distribution

wordpredict-0.1.2-py3-none-any.whl (2.8 kB view details)

Uploaded Python 3

File details

Details for the file wordpredict-0.1.2.tar.gz.

File metadata

  • Download URL: wordpredict-0.1.2.tar.gz
  • Upload date:
  • Size: 2.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.2.tar.gz
Algorithm Hash digest
SHA256 82ab199d9a17f1d03916922e19e60e8321f1568aad93d2d5294b3bf56c987e4a
MD5 18098eb78a8c0321947bece3d8418e7b
BLAKE2b-256 8de101e221a854a32bcad7a5b5659eaa4de9fbba82e3521525ebd708cb7a7784

See more details on using hashes here.

File details

Details for the file wordpredict-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: wordpredict-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 2.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6e5237135c1ff959da55270ec89bfd1eefe6d2643a42eddb65625f5d82fc853f
MD5 9a10ebd57f4cf63291c49aa2b23fa548
BLAKE2b-256 233de1da8a472f1e16b0d903db89ce761b15d3f6ed9c9d3d712bd4e7f660c33a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page