Skip to main content

word predictor

Project description

wordpredict

This is a library that predicts words for ambiguous input.

Installation

pip install wordpredict

How to use

code

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

print("start user input")

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["i", "j", "k", "l"]
print(wp.update(input))

print("reset user input")
wp.reset()

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["m", "n", "o", "p"]
print(wp.update(input))

output

start user input
['for', 'e', 'from', 'he', 'has', 'have']
['he', 'get', 'here', 'her', 'help', 'few']
['help', 'held', 'felt', 'hell', 'hello', 'helps']
reset user input
['for', 'e', 'from', 'he', 'has', 'have']
['for', 'home', 'go', 'how', 'good', 'end']

corpus

e.g., https://www.kaggle.com/datasets/rtatman/english-word-frequency

execution time

%%timeit

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

1.42 s ± 83.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit

input = ["e", "f", "g", "h"]
wp.update(input)
input = ["e", "f", "g", "h"]
wp.update(input)
input = ["i", "j", "k", "l"]
wp.update(input)

8.34 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

note

autocomple was implemented with reference to https://doi.org/10.1145/3173574.3173755

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wordpredict-0.1.3.tar.gz (2.3 kB view details)

Uploaded Source

Built Distribution

wordpredict-0.1.3-py3-none-any.whl (2.8 kB view details)

Uploaded Python 3

File details

Details for the file wordpredict-0.1.3.tar.gz.

File metadata

  • Download URL: wordpredict-0.1.3.tar.gz
  • Upload date:
  • Size: 2.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.3.tar.gz
Algorithm Hash digest
SHA256 b06cb86728dcf504a89edb40191067dae3a074c302f4476facd3c6b37ddb57bb
MD5 13fe9226cc60d9956d468b4425dc7079
BLAKE2b-256 b7ffb1e51bc89f7df619cc7d1e52bbf7597343892e225c19654210e8c5541842

See more details on using hashes here.

File details

Details for the file wordpredict-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: wordpredict-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 2.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 05b527152ff4874a4b9f116d1c625c94e3fd98d357a21e3ce8d458dc9451acdb
MD5 37b134d347e2d3655850bb0a130572e5
BLAKE2b-256 78c0eb18d93e258896bc048503a61132aab9052b3237c3afede8ed735d7bcbeb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page