Skip to main content

word predictor

Project description

wordpredict

This is a library that predicts words for ambiguous input.

Installation

pip install wordpredict

How to use

code

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

print("start user input")

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["i", "j", "k", "l"]
print(wp.update(input))

print("reset user input")
wp.reset()

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["m", "n", "o", "p"]
print(wp.update(input))

output

start user input
['for', 'e', 'from', 'he', 'has', 'have']
['he', 'get', 'here', 'her', 'help', 'few']
['help', 'held', 'felt', 'hell', 'hello', 'helps']
reset user input
['for', 'e', 'from', 'he', 'has', 'have']
['for', 'home', 'go', 'how', 'good', 'end']

corpus

e.g., https://www.kaggle.com/datasets/rtatman/english-word-frequency

execution time

%%timeit

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

1.42 s ± 83.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit

input = ["e", "f", "g", "h"]
wp.update(input)
input = ["e", "f", "g", "h"]
wp.update(input)
input = ["i", "j", "k", "l"]
wp.update(input)

8.34 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

note

autocomple was implemented with reference to https://doi.org/10.1145/3173574.3173755

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wordpredict-0.1.4.tar.gz (2.3 kB view details)

Uploaded Source

Built Distribution

wordpredict-0.1.4-py3-none-any.whl (2.9 kB view details)

Uploaded Python 3

File details

Details for the file wordpredict-0.1.4.tar.gz.

File metadata

  • Download URL: wordpredict-0.1.4.tar.gz
  • Upload date:
  • Size: 2.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.4.tar.gz
Algorithm Hash digest
SHA256 52b6c400865d260d4bad98f19883ea0b81f446937868824006994f85e25ae2fe
MD5 5c3edeae2fa7e16cec318ba7299fab58
BLAKE2b-256 9e4e36959147c3eed835fd5ec0e847a4603883d8832b728e8125f132e2254b8a

See more details on using hashes here.

File details

Details for the file wordpredict-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: wordpredict-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 2.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 557db5e89fceb20bd5558e0f5d8e9a391a14bbfb0f7cbcb256ddb9a860c0fea8
MD5 e2a14c87f6b8492a7390a039ffe96b98
BLAKE2b-256 4ace080212599ed42e78d580b1a34635e2bdfc06896c17eb97e592f4c44005b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page