Skip to main content

word predictor

Project description

wordpredict

This is a library that predicts words for ambiguous input.

Installation

pip install wordpredict

How to use

code

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

print("start user input")

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["i", "j", "k", "l"]
print(wp.update(input))

print("reset user input")
wp.reset()

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["m", "n", "o", "p"]
print(wp.update(input))

output

start user input
['for', 'e', 'from', 'he', 'has', 'have']
['he', 'get', 'here', 'her', 'help', 'few']
['help', 'held', 'felt', 'hell', 'hello', 'helps']
reset user input
['for', 'e', 'from', 'he', 'has', 'have']
['for', 'home', 'go', 'how', 'good', 'end']

corpus

e.g., https://www.kaggle.com/datasets/rtatman/english-word-frequency

execution time

%%timeit

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

1.42 s ± 83.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit

input = ["e", "f", "g", "h"]
wp.update(input)
input = ["e", "f", "g", "h"]
wp.update(input)
input = ["i", "j", "k", "l"]
wp.update(input)

8.34 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

note

autocomple was implemented with reference to https://doi.org/10.1145/3173574.3173755

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wordpredict-0.1.5.tar.gz (2.3 kB view details)

Uploaded Source

Built Distribution

wordpredict-0.1.5-py3-none-any.whl (2.9 kB view details)

Uploaded Python 3

File details

Details for the file wordpredict-0.1.5.tar.gz.

File metadata

  • Download URL: wordpredict-0.1.5.tar.gz
  • Upload date:
  • Size: 2.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.5.tar.gz
Algorithm Hash digest
SHA256 1ee6897a982d4feaaabb6180064066e66a2df2d6a9c60113b74a7784f14a6bea
MD5 46bab47804bf8ad641b9af6c2df410be
BLAKE2b-256 ba49a10207ea6c7b46d5ec329d988e76b8d81c94ad7663dc33f9470eef17304e

See more details on using hashes here.

File details

Details for the file wordpredict-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: wordpredict-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 2.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.8.13 Darwin/22.5.0

File hashes

Hashes for wordpredict-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 3a84796acaedd86beff4bd4fc9a52c8b8a70e1c75e1fda8f5ac877fbb48537bd
MD5 6123c17b4453f54cfb759270b900b8ea
BLAKE2b-256 0d8dbc892df72b73166edd0ade5e390b3426c1606ba2a92370ac87df6ce208d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page