Skip to main content

word predictor

Project description

wordpredict

This is a library that predicts words for ambiguous input.

Installation

pip install wordpredict

How to use

code

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

print("start user input")

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["i", "j", "k", "l"]
print(wp.update(input))

print("reset user input")
wp.reset()

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["m", "n", "o", "p"]
print(wp.update(input))

output

start user input
['for', 'e', 'from', 'he', 'has', 'have']
['he', 'get', 'here', 'her', 'help', 'few']
['help', 'held', 'felt', 'hell', 'hello', 'helps']
reset user input
['for', 'e', 'from', 'he', 'has', 'have']
['for', 'home', 'go', 'how', 'good', 'end']

corpus

e.g., https://www.kaggle.com/datasets/rtatman/english-word-frequency

execution time

%%timeit

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

1.42 s ± 83.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit

input = ["e", "f", "g", "h"]
wp.update(input)
input = ["e", "f", "g", "h"]
wp.update(input)
input = ["i", "j", "k", "l"]
wp.update(input)

8.34 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

note

autocomple was implemented with reference to https://doi.org/10.1145/3173574.3173755

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wordpredict-0.2.1.tar.gz (2.4 kB view details)

Uploaded Source

Built Distribution

wordpredict-0.2.1-py3-none-any.whl (3.2 kB view details)

Uploaded Python 3

File details

Details for the file wordpredict-0.2.1.tar.gz.

File metadata

  • Download URL: wordpredict-0.2.1.tar.gz
  • Upload date:
  • Size: 2.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.6 Linux/6.2.0-1014-azure

File hashes

Hashes for wordpredict-0.2.1.tar.gz
Algorithm Hash digest
SHA256 7229486a9c366e16a9b6be750a6a3f89f9e3d39d03293036c6d346c009c131f4
MD5 4d3f8d02a01303d627536473d97316af
BLAKE2b-256 bde8d10ceb2d63a87a43a5aba8371f67aa9ed0fd45b37361420761446be5ab3e

See more details on using hashes here.

File details

Details for the file wordpredict-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: wordpredict-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 3.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.6 Linux/6.2.0-1014-azure

File hashes

Hashes for wordpredict-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 57df04bef9a8e312de48a1f48c4206cdabfb4c2243b36b001e55484f277596e9
MD5 529761f21f63c5fb99ecdc634107a864
BLAKE2b-256 8fbeca2b8bd9d81fe291db966d7cde24cf7280eccd2c15e39bf16b28398af702

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page