Skip to main content

word predictor

Project description

wordpredict

This is a library that predicts words for ambiguous input.

Installation

pip install wordpredict

How to use

code

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

print("start user input")

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["i", "j", "k", "l"]
print(wp.update(input))

print("reset user input")
wp.reset()

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["m", "n", "o", "p"]
print(wp.update(input))

output

start user input
['for', 'e', 'from', 'he', 'has', 'have']
['he', 'get', 'here', 'her', 'help', 'few']
['help', 'held', 'felt', 'hell', 'hello', 'helps']
reset user input
['for', 'e', 'from', 'he', 'has', 'have']
['for', 'home', 'go', 'how', 'good', 'end']

corpus

e.g., https://www.kaggle.com/datasets/rtatman/english-word-frequency

execution time

%%timeit

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

1.42 s ± 83.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit

input = ["e", "f", "g", "h"]
wp.update(input)
input = ["e", "f", "g", "h"]
wp.update(input)
input = ["i", "j", "k", "l"]
wp.update(input)

8.34 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

note

autocomple was implemented with reference to https://doi.org/10.1145/3173574.3173755

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wordpredict-0.2.2.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

wordpredict-0.2.2-py3-none-any.whl (3.2 kB view details)

Uploaded Python 3

File details

Details for the file wordpredict-0.2.2.tar.gz.

File metadata

  • Download URL: wordpredict-0.2.2.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.6 Linux/6.2.0-1014-azure

File hashes

Hashes for wordpredict-0.2.2.tar.gz
Algorithm Hash digest
SHA256 4de682aa5e04a8a174482124fa38091a0d380974a43199b00ecb5274ddd8c857
MD5 aec08aed1c8ab266bf91df160bb2b1d2
BLAKE2b-256 e05fa2e476cfa1a446b1ffe97eb685eec40bffb3f36cee0394f740803540ba52

See more details on using hashes here.

File details

Details for the file wordpredict-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: wordpredict-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 3.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.6 Linux/6.2.0-1014-azure

File hashes

Hashes for wordpredict-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 771380f70317dc25b23934544ff0fa782174e4654eef2fef5d8066306993b38f
MD5 d0cd12831f09a7198c0bfe67a87c8c06
BLAKE2b-256 fa4c83793b4f13bc2f3b39f1c74ff1645c4f5328bdd461cec56e2665ff631a9b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page