Skip to main content

word predictor

Project description

wordpredict

This is a library that predicts words for ambiguous input.

Installation

pip install wordpredict

How to use

code

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

print("start user input")

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["i", "j", "k", "l"]
print(wp.update(input))

print("reset user input")
wp.reset()

input = ["e", "f", "g", "h"]
print(wp.update(input))
input = ["m", "n", "o", "p"]
print(wp.update(input))

output

start user input
['for', 'e', 'from', 'he', 'has', 'have']
['he', 'get', 'here', 'her', 'help', 'few']
['help', 'held', 'felt', 'hell', 'hello', 'helps']
reset user input
['for', 'e', 'from', 'he', 'has', 'have']
['for', 'home', 'go', 'how', 'good', 'end']

corpus

e.g., https://www.kaggle.com/datasets/rtatman/english-word-frequency

execution time

%%timeit

import pandas as pd
from wordpredict import WordPredict


corpus = pd.read_csv(
    "./unigram_freq.csv",
    header=0,
    keep_default_na=False,
).values
wp = WordPredict(corpus[:, 0], corpus[:, 1])

1.42 s ± 83.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit

input = ["e", "f", "g", "h"]
wp.update(input)
input = ["e", "f", "g", "h"]
wp.update(input)
input = ["i", "j", "k", "l"]
wp.update(input)

8.34 ms ± 315 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

note

autocomple was implemented with reference to https://doi.org/10.1145/3173574.3173755

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wordpredict-0.2.3.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

wordpredict-0.2.3-py3-none-any.whl (3.3 kB view details)

Uploaded Python 3

File details

Details for the file wordpredict-0.2.3.tar.gz.

File metadata

  • Download URL: wordpredict-0.2.3.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.0 Linux/6.2.0-1016-azure

File hashes

Hashes for wordpredict-0.2.3.tar.gz
Algorithm Hash digest
SHA256 43b49b0d921b67ed821fdf384f426221ba0315cd90727e3e4c9e45875ab787ad
MD5 b0b1e46b36502803b7647447476de754
BLAKE2b-256 67a676b18178c2b75be22f3ec5fd9d166d48c30560c3db38f227da20cb5e969e

See more details on using hashes here.

File details

Details for the file wordpredict-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: wordpredict-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 3.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.0 Linux/6.2.0-1016-azure

File hashes

Hashes for wordpredict-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e1a7aec1cfd578c56ddcc99dd96cf2eefd74567a9ad38dd852b9c9cc223ddbd0
MD5 7b7cf017c3d3f882725a201de87ff976
BLAKE2b-256 24781faeb90f509bdd94c085567df38cfbe08084a34f56e2d37edc6f274b267e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page