No project description provided
Project description
wordstreamer is a tiny generic text-generation module. It is a set of convenient generator-based tools to generate any text.
Be it code, markup or anything else, wordstreamer got you covered.
Streams / generators are perfect for text generations.
Those are easy to use, easily combined, and have a great speed and memory footprint in concurrent / stream-based workflows (such as webservers).
Features:
-
Build custom renderables
- An operation priority system with optional custom wrapping logic
- Render as string / bytes, as string / byte streams or as text / binary files
- Insert arbitrary markers to pass information upstream
- Use context to tweak rendering as you need
- Several common generic renderables included in startkit
-
Build custom stream processors
- Process streams of tokens in any way
- Several common processors included in stream_utils
-
Have fun with strings attached
Installation
Just install wordstreamer
module from PyPI
Examples
Check out examples folder for examples
Math expressions Almost correct json.dumps implementation
Docs
Core
Core module (wordstreamer.core
) consists of several user-facing entities: Renderable
base class, Marker
and Renderer
classes and get_render
function.
Other classes (Context
and StreamFile
) are internal, but fairly easy to use if needed.
Your basic flow is:
- Create severable
Renderable
for your needs - Create an instance of
Renderer
with context payload - Use one of
Renderer
's methods to output the renderable in preferrable format
Renderable
wordstreamer.core.Renderable
is the main class of the module.
Your basic custom renderable has to implement stream
method that would return a stream of tokens.
Here's a simple renderable that renders a list-like string from a range, simulating str(list(range(...)))
from typing import Iterable
from wordstreamer import Renderable, Context, TokenStream
from wordstreamer.stream_utils import omit_end
class Range(Renderable):
def __init__(self, value: range):
self.value = value
# let's make a separate method for convenience
def numbers(self, context: Context) -> TokenStream:
for n in self.value:
yield str(n)
yield ","
yield " "
def stream(self, context: Context) -> TokenStream:
yield "["
yield from omit_end(self.numbers(context))
yield "]"
(Note: we could have done yield ", "
, but that would make stream manipulation less effective (e.g. stripping unwanted spaces))
Then, to render it, use render_string
:
# prints "[2, 4, 6, 8]"
print(
Range(range(2, 9, 2)).render_string()
)
Functional renderables
Sometimes, you need simple renderables defining only .stream()
method, similar to React functional components.
Something like this:
def render_sum(left: float, right: float) -> TokenStream:
yield str(left)
yield " + "
yield str(right)
wordstreamer defines a convenience wrapper for that, make_renderable
.
Just use it as a decorator and add Context
as a first positional argument:
from wordstreamer import make_renderable, Context
@make_renderable
def render_sum(context: Context, left: float, right: float) -> TokenStream:
yield str(left)
yield " + "
yield str(right)
And use it like any other renderable, omitting context
argument:
print(
render_sum(4, 5).render_string()
)
The downside of that approach is that you get a basic plain Renderable, which makes it impossible to build a complex type hierarchy
Renderer and Context
While using renderable.render_string()
is totally fine, you can easily dive into the rendering flow.
You have noticed this mysterious Context value going inside function arguments. This is a payload that allows you to pass data from top to bottom, and vice versa.
It can be passed into renderable.render_string(context: Payload)
, where Payload
is a dictionary with str
keys and arbitrary values.
Inside .stream
functions, this payload becomes an instance of Context
, which is a simple wrapper that supports attribute access:
class MyRenderable(Renderable):
def stream(self, context: Context) -> TokenStream:
if context.left:
yield str(context.left)
if context.op:
yield str(context.op)
if context.right:
yield str(context.right)
MyRenderable().render_string({"left": 4, "op": "+", "right": 5}) # "4+5"
Context is also mutable and derivable. It means you can derive a new context from an old one and a new payload, passing it to bottom components:
...
def stream(self, context: Context) -> TokenStream:
level = context.level or 0
subcontext = context.derive(level=level + 1)
yield "-" * level
yield from self.child.render(subcontext)
...
When you need a more granular control over rendering steps and output, use Renderer
class. Let's start with Renderable.render_str
source code:
def render_string(self, context: Payload | None = None):
"""Render component with a provided context. Check `Renderer` class for advanced rendering"""
return Renderer(context).render_string(self)
Oh no, we were fooled! Anyway, the Renderer
class takes care of transforming the token stream into some other form, be it a string, bytestring, or even a file.
To use it, first create a renderer:
from wordstreamer import Renderer
renderer = Renderer({"some_key": 1, "another_key": "secret_passwordQWERTY"})
Then, you can produce the output in 7 formats:
- As a
Stream[Token]
withrenderer.stream(payload)
- As a
Stream[str]
withrenderer.str_stream(payload)
(takes a TokenStream and drops allMarker
instances) - As a
Stream[bytes]
withrenderer.byte_stream(payload)
(takes a Stream[str] and encodes in as UTF-8) - As
bytes
withrenderer.render_bytes(payload)
(joins aStream[bytes]
) - As
str
withrenderer.render_string(payload)
(joins aStream[str]
) - As a text file with
renderer.as_file(payload)
(makes a file wrapper aroundStream[str]
) - As a binary file with
renderer.as_binary_file(payload)
(makes a file wrapper aroundStream[bytes]
)
Combining renderables
Any complex text builder has nesting.
Due to stream-based flow, one can easily combine renderables.
Let's make a simple math expression renderer. We will support numbers, five binary operations (+
, -
, *
, /
, and **
), and unary -
.
First, let's make a base class to:
- define common methods
- build a type hierarchy (this is optional, but it's extremely convenient and straightforward when you have a complex syntax).
from __future__ import annotations
from wordstreamer import Renderable
# we will need this later
priorities: dict[str, int] = {
"+": 0,
"-": 0,
"*": 1,
"/": 1,
"u-": 2,
"**": 3,
}
class Expression(Renderable):
def __add__(self, other: Expression) -> BinaryExpression:
return BinaryExpression(self, "+", other)
def __sub__(self, other: Expression) -> BinaryExpression:
return BinaryExpression(self, "-", other)
def __mul__(self, other: Expression) -> BinaryExpression:
return BinaryExpression(self, "*", other)
def __truediv__(self, other: Expression) -> BinaryExpression:
return BinaryExpression(self, "/", other)
def __pow__(self, other: Expression) -> BinaryExpression:
return BinaryExpression(self, "**", other)
def __neg__(self) -> BinaryExpression:
return UnaryMinus(self)
Then, let's make a renderable for numbers:
class Number(Expression):
priority = 100
def __init__(self, value: float):
self.value = value
def stream(self, context: Context) -> TokenStream:
yield str(self.value)
And for composite expressions:
class BinaryExpression(Expression):
associativity = "left"
def __init__(self, lhs: Expression, op: str, rhs: Expression):
if op == "**":
self.associativity = "right"
self.priority = priorities[op]
self.lhs = lhs.respect_priority(self, side="left")
self.rhs = rhs.respect_priority(self, side="right")
self.op = op
def stream(self, context: Context) -> TokenStream:
yield from self.lhs.stream(context)
yield " "
yield self.op
yield " "
yield from self.rhs.stream(context)
class UnaryMinus(Expression):
priority = priorities["u-"]
def __init__(self, rhs: Expression):
self.rhs = rhs.respect_priority(self)
# this is an optional tweak to omit parens if the negative expression is on the right side, as in `4 ** -5` but `(-5) ** 4`
def priority_comparator(self, operation: Renderable, side: str = "none") -> bool:
if side == "right":
return False
return super().priority_comparator(operation, side)
def stream(self, context: Context) -> TokenStream:
yield "-"
yield from self.rhs.stream(context)
Finally, we should treat negative numbers the same as a number with an unary minus:
def number(value: float) -> Number | UnaryMinus:
if value < 0:
return -Number(abs(value))
return Number(value)
That's it! Now let's test our simple language:
expression = number(6) + number(10) * (number(4.4) ** number(-5)) ** number(4)
# 6 + 10 * (4.4 ** -5) ** 4
print(
expression.render_string()
)
You can find the full code in examples
Priority magic
You may be wondering, where did ()
come from in this example? We didn't render them, right?
Those parens actually come from the respect_priority
flow.
We call expression.respect_priority(operation, comparator, side)
(latter two args are optional), where expression
is some nested expression, and operation
is a parent expression.
In 6 + 5
, the whole expression is operation, while 6
and 5
are sub-expressions.
In this case, there is no need for wrapping (so that (6) + (5)
is redundant). But to know that, we have to know priority rules of the language.
The default behaviour is simple: having two attributes, priority
(int), and associativity
("left" | "right" | "both").
- If the sub-expression priority is less than the expression priority, we need wrapping:
e = number(5) + number(6)
e2 = e * number(10)
print(e2.render_string()) # (5 + 6) * 10
Here, if we don't wrap, we will get "5 + 6 _ 10", which is not the original intention. But we've defined that +
priority is 0
and _
priority is1
by assigning it inBinaryExpression
constructor.
So, when we write s * number(10)
, we do BinaryExpression(5 + 6, *, 10)
. Let's call this expression self
It calls (5 + 6).respect_priority(self, side="left")
, and, because (5 + 6)
priority is lower than that of self
, it wraps.
- If the priority is the same, default comparator checks the associativity. If the side is "none" or associativity is "both", it doesn't wrap.
Then, if side is not the same as associativity, it does wrap, like with**
:
e = number(5) + number(6)
e2 = number(10) - e
print(e2.render_string()) # 10 - (5 + 6)
Despite operations having the same priority, we need to wrap the expression on the right, because otherwise it will become (10 - 5) + 6
(11), instead of 10 - (5 + 6)
(-1)
So, the default behaviour is to adhere to usual binary expression rules, and wrapping with built-in renderable from start kit, Parens.
You can easily customize how wrapping is done by redefining Renderable.wrap(self) -> Renderable
on your renderable class, without changing the priority behaviour.
The comparator ((self, operation, side = "none") -> bool
) can be passed into .respect_priority
, or you can redefine .priority_comparator
method
Markers
Sometimes you may need to pass some data upwards, and for that TokenStream can include instances of Marker, simple data container:
...
def stream(self, context: Context) -> TokenStream:
yield "[",
yield Marker("block-content", data={"values": [1, 2, 3]})
yield "]"
...
Then, you can watch for markers upstream, in some parent component:
from wordstreamer.utils import is_marker
...
def stream(self, context: Context) -> TokenStream:
yield "x"
yield " "
yield "="
for token in self.block.stream(context):
if is_marker(token) and token.key == "block-content":
...
else:
yield token
...
You can obviously do that with context, but keep in mind that derived context don't pass changes to their parent contexts
Start Kit and Stream Utils
wordstreamer includes useful building tools in form of two modules: wordstreamer.startkit
and wordstreamer.stream_utils
.
The first is a set of common renderables, while the second is a set of functions to manipulate the stream.
Start Kit
Stringify
A simple renderable, taking any object, and rendering it using str()
:
from wordstreamer.startkit import Stringify
Stringify(6).render_string() # "6"
This is useful when injecting pre-rendered content, for fast prototyping, etc.
Parens
This is a generic element that wraps your renderable given two strings, one at the start and one at the end.
from wordstreamer.startkit import Parens, Stringify
content = Stringify("content")
Parens(content).render_string() # "(content)"
Parens(content, "[", "]").render_string() # "[content]"
Parens(content, '"', '"').render_string() # '"content"'
Separated
Renders several renderables, injecting a stream of tokens between every renderable:
from wordstreamer.startkit import Separated, Stringify
numbers = [Stringify(x) for x in range(10)]
Separated(*numbers, separator=[",", " "]).render_string() # "0, 1, 2, 3, 4, 5, 6, 7, 8, 9"
If you want to append separator after the stream, pass trail=True
in the constructor
Block
Renders a full-blown block, with full customization.
By default renders a 4-space indented C-style block (with {}
):
from wordstreamer.startkit import Block, Stringify, Separated
from wordstreamer import (
Renderable,
TokenStream,
make_renderable,
Context
)
@make_renderable
def counter(context: Context, n: int):
for i in range(n):
yield str(i)
if i + 1 < n:
yield "\n"
head = Stringify("if 10 == 89")
body = counter(5)
"""
if 10 == 89 {
0
1
2
3
4
}
"""
print(
Block(
head=head,
body=body,
).render_string()
)
But, if you want Python-style, let's do that:
def pythonic_wrapper(stream: TokenStream) -> TokenStream:
yield ":"
yield "\n"
yield from stream
yield "\n"
"""
if 10 == 89:
0
1
2
3
4
"""
print(
Block(
head=head,
body=body,
wrapper=pythonic_wrapper
).render_string()
)
You can omit head
argument altogether, or provide a custom indenter:
def staircase_indenter(stream: TokenStream) -> TokenStream:
tab_level = 1
for token in stream:
yield token
if token == "\n":
yield tab_level * 4 * " "
tab_level += 1
"""
if 10 == 89 {
0
1
2
3
4
}
"""
print(
Block(
head=head,
body=body,
indenter=staircase_indenter
).render_string()
)
Stream utils
wordstreamer.stream_utils
contain a set of 'stream transformers' — functions that manipulate stream (or several) building up a new one.
This section is a WIP, but here's what the stream utils module defines:
def add_tab(
stream: Stream[Token], tab_char: str = " ", newlines: set[Token] | None = None
) -> Stream[Token]:
"""
Adds `tab_char` after any token that is equal to any of the newline tokens in `newlines`.
By default, `tab_char` is " " (4 ASCII spaces U+0020) and `newlines` is {"\\n"}
"""
def separated(
*streams: Stream[Piece], separator: Stream[Piece], trail: bool = False
) -> Stream[Piece]:
"""
Interjects `separator` tokens between streams, outputting a new chained stream.
`trail` defines if separator should be added after last token, i.e. if a trailing comma should be inserted
"""
def prepend(stream: Stream[Piece], *pieces: Piece) -> Stream[Piece]:
"""Injects tokens before stream"""
def append(stream: Stream[Piece], *pieces: Piece) -> Stream[Piece]:
"""Injects tokens after stream"""
def omit_start(stream: Stream[Piece], count: int = 1) -> Stream[Piece]:
"""Omits `count` tokens from the start of the stream"""
def omit_end(stream: Stream[Piece], count: int = 1) -> Stream[Piece]:
"""Omits `count` tokens from the end of the stream"""
def concat(*streams: Stream[Piece] | None) -> Stream[Piece]:
"""Concatenates several streams"""
def wrap(
stream: Stream[Piece],
prefix: Stream[Piece],
postfix: Stream[Piece],
) -> Stream[Piece]:
"""Prepends `prefix` before stream and appends `postfix` after stream"""
def stream_noop(stream: Stream[Piece]) -> Stream[Piece]:
"""Leaves stream intact, useful to pass as a no-op transformer"""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file wordstreamer-0.1.2.tar.gz
.
File metadata
- Download URL: wordstreamer-0.1.2.tar.gz
- Upload date:
- Size: 15.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.13 Linux/6.2.0-1016-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9382b91ef077e2b88ea2a34766d68c87a93826a0c272b1dd19598668d06c82c3 |
|
MD5 | 9b945e81f0705c266f8aa77288cbe999 |
|
BLAKE2b-256 | 884b9640eaa9996044d801af0fe8b4c2c8facc69241326d35602f4b4b94f94ed |
Provenance
File details
Details for the file wordstreamer-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: wordstreamer-0.1.2-py3-none-any.whl
- Upload date:
- Size: 13.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.13 Linux/6.2.0-1016-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a029b2529bdbbbe43a7fed047cc8c9cf2aa770868570065dd5249bc7baf5b4d |
|
MD5 | 599a8635ee156c5a2ce64efe42364fa2 |
|
BLAKE2b-256 | f245672ba9b889dcb737c1754cab6cc24639f8fbe5758e797e532203bda896e8 |