Skip to main content

No project description provided

Project description

Rappi's Workforce Team Data Analytics and Forecasting

This Python package provides functionality for data analysis and forecasting for Rappi's Workforce Management (WFM) system.

Installation

You can install the package using pip:

pip install workforcerappi


# #The package includes functions for processing and preparing data for analysis.

# importar librerias
from workforcerappi import data_processing as dp, modeling, order_distribution as od
import pandas as pd

# definir parametros
month="Agosto"
startdate = "2024-03-01"
FEATURES = ['dayofweek', 'quarter', 'month', 'year', 'dayofyear', 'dayofmonth', 'weekofyear']
year_month="2024-08"
TARGET = "SS" # or "BR"
SERVICE_USER_TYPE="Users"
SERVICE="Customer Live Orders"
REGION="SS" # or "BR"
concurrencia = 2  # concurrencia del servicio
sla = 0.8  # nivel de servicio
meta_aht = 10  
date_range=['2023-01-01', '2024-05-31']  

df_ordered = dp.read_and_sort_orders(date_range)
csv_path = "C:/Users/jonathan.marin/Documents/GitHub/rappi/wfm/Calendario Rappi - BD_Feriados.csv"
special = pd.read_csv(csv_path)
special=special.filter(['PAIS', 'FERIADO', 'Fecha', 'Criticidad'])
special['Fecha'] = pd.to_datetime(special['Fecha'], format='%d/%m/%Y').dt.date
special = special[special["PAIS"].isin(["CO","MX"])]
special = special[special["Criticidad"] == "Alto"]
special_days = special["Fecha"].to_list()

df_filtered = dp.filter_special_dates(df_ordered, special_days)

orders = dp.pivot_orders(df_filtered,REGION)
data = orders.set_index("FECHA")
train, test = dp.split_train_test_data(data, startdate)
train = dp.create_features(train)
test = dp.create_features(test)

X_train = train[FEATURES]
y_train = train[TARGET]
X_test = test[FEATURES]
y_test = test[TARGET]
model = modeling.train_xgboost_model(X_train, y_train, X_test, y_test)
predictions = modeling.make_predictions(model, X_test)
test['prediction'] = predictions

predictions = dp.create_future_predictions(model, FEATURES, '2024-08-01','2024-08-31', 'D')
month_to_predict = predictions
ordenes_financieras = od.create_ordenes_financieras(df_ordered, month_to_predict, ordenes_aprobadas=None, REGION=REGION , year_month=year_month)
curva_ordenes = od.create_curva_ordenes(df_ordered,REGION)
df3 = od.distribute_orders(ordenes_financieras, curva_ordenes)
print(df3.head())
# ajustar dias de festividades
# valor_a_ajustar = 1.30
# df3.loc[df3["FECHA"] == "2024-08-07", "CO"] *= valor_a_ajustar

inflow = dp.read_cr_aht(date_range)

result=od.distribute_inflow_intraday(inflow, df3, SERVICE_USER_TYPE, SERVICE, REGION)
result2 = od.distribute_aht_intraday(inflow, df3, SERVICE_USER_TYPE, SERVICE,REGION, result, meta_aht)

required_headcount_df = od.hc(result,result2,sla, concurrencia)
print(required_headcount_df.head(1))
print("Done!")

# License
# This project is licensed under a private license by Rappi Inc. Unauthorized copying, distribution, or modification of this project, via any medium, is strictly prohibited. For more details, please contact the legal department at Rappi.

## Contact Information
# For licensing inquiries, please reach out to:
# * **Email: legal@rappi.com**

# © 2024 Rappi Inc. Todos los derechos reservados

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

workforcerappi-0.1.0-py3-none-any.whl (14.0 kB view details)

Uploaded Python 3

File details

Details for the file workforcerappi-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for workforcerappi-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7ff084a197a93ae80173aef5352ced43cb39638c7fded1c484d535ca75428685
MD5 76d3cbe5d77df74c2aa953a9a009bab3
BLAKE2b-256 9c449028e169c60b31cbf86ed901ff80beccd2be8f9fad7e1528d5e346495b6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page