Skip to main content

Extract information from the exported Web of Science's tab delimited text file

Project description

WoS Tab File

Extract information from the exported Web of Science's tab delimited text file

Installation

pip install wos-tabfile

Basic Usage

  1. Retrieve publication year and numbers of citations in different indicators.
from wostabfile.core import WosTabFile
from collections import OrderedDict

# data source
root_path = "data/social network"
file_path = root_path + "/part1.txt"

# header fields in the text file
# Tag from: https://images.webofknowledge.com/images/help/WOS/hs_wos_fieldtags.html
wos_fields = ["PY", "NR", "TC", "U1", "U2"]
# load data by specific keys
wtf = WosTabFile(file_path=file_path)

table = wtf.generate_table(wos_fields)

print()
# group by year using count for numbers of publications per year
new_table=wtf.group_by(table,key_index=0,value_index=1,method="count")
new_table = OrderedDict(sorted(new_table.items()))

print("Year\tNumber of publication")
for year in new_table:
    print(f'{year}\t{new_table[year]}')
  1. Retrieve keywords and its frequency from the bibliometric data
from wostabfile.core import WosTabFile
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize

root_path = "data/social network"
wos_fields = ["DE"]
wtf = WosTabFile(file_path=root_path)
dict_words={}

def singularize(text):
    wnl = WordNetLemmatizer()
    tokens = [token.lower() for token in word_tokenize(text)]
    lemmatized_words = [wnl.lemmatize(token) for token in tokens]
    return (' '.join(lemmatized_words)).strip()

def process_row(rows):
    global dict_words
    for ks in rows:
        wlist=ks[0]
        for w in wlist.split(";"):
            w=w.strip()
            if w=="":
                continue
            w=singularize(w)
            if w not in dict_words.keys():
                dict_words[w]=1
            else:
                dict_words[w]+=1

table = wtf.generate_table_by_folder(wos_fields,func=process_row)
dict_words =  dict(sorted(dict_words.items(),reverse=True, key=lambda item: item[1]))

print("Word\tTerm Count")
for k in list(dict_words.keys())[:20]:
    print(f'{k}\t{dict_words[k]}')
print()
print("Number of unique words: ",len(dict_words.keys()))

Sample bibliometric data in the above examples can be downloaded in this link.

License

The wos-tabfile project is provided by Donghua Chen.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wos-tabfile-0.0.1a1.tar.gz (8.7 kB view details)

Uploaded Source

File details

Details for the file wos-tabfile-0.0.1a1.tar.gz.

File metadata

  • Download URL: wos-tabfile-0.0.1a1.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.21.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for wos-tabfile-0.0.1a1.tar.gz
Algorithm Hash digest
SHA256 2cff64c480c1f52dc565ecd16c6da0909094f3c2e8083e63b293e2e75182063d
MD5 a28f05506cc8abd5cbf6e3ee9b1a9f0b
BLAKE2b-256 2e20ebb4425b8f599e160ea84b440ec09a2d69102288bca007573160814b1ddd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page