Skip to main content

Optimize both discrete and continuous variables using just a continuous optimizer such as in scipy.optimize

Project description

wrapdisc

wrapdisc is a Python 3.10 package to wrap a discrete optimization objective such that it can be optimized by a continuous optimizer such as in scipy.optimize. It maps the discrete variables into a continuous space, and uses an in-memory cache over the discrete space. Both discrete and continuous variables are supported, and are motivated by Ray Tune's search spaces.

cicd badge

Limitations

  • The use of an unbounded in-memory cache over the original objective function imposes a memory requirement. If multiple workers are used, each worker has its own such cache, thereby using additional memory for each worker. This cache prevents duplicated calls to the original objective function in a worker.
  • The ability to support constraints such as scipy.optimize.NonlinearConstraint or scipy.optimize.LinearConstraint is unclear. A constraint can however be modeled by returning inf upon its violation in the original objective function.

Links

Caption Link
Repo https://github.com/impredicative/wrapdisc/
Changelog https://github.com/impredicative/wrapdisc/releases
Package https://pypi.org/project/wrapdisc/

Installation

Python ≥3.10 is required. To install, run:

pip install wrapdisc

No additional third-party packages are required or installed.

Variables

The following classes of variables are available:

Space Usage Description Decoder Examples
Discrete ChoiceVar(items) Nominal (unordered categorical) one-hot via max • fn(["USA", "Panama", "Cayman"])
Discrete GridVar(values) Ordinal (ordered categorical) round • fn([2, 4, 8, 16])
• fn(["good", "better", "best"])
Discrete RandintVar(lower, upper) Integer from lower to upper, both inclusive round • fn(0, 6)
• fn(3, 9)
• fn(-10, 10)
Discrete QrandintVar(lower, upper, q) Quantized integer from lower to upper in multiples of q round to a multiple • fn(0, 12, 3)
• fn(1, 10, 2)
• fn(-10, 10, 4)
Continuous UniformVar(lower, upper) Float from lower to upper passthrough • fn(0.0, 5.11)
• fn(0.2, 4.6)
• fn(-10.0, 10.0)
Continuous QuniformVar(lower, upper, q) Quantized float from lower to upper in multiples of q round to a multiple • fn(0.0, 5.1, 0.3)
• fn(-5.1, -0.2, 0.3)

Usage

Example:

import operator
from typing import Any

import scipy.optimize

from wrapdisc import Objective
from wrapdisc.var import ChoiceVar, GridVar, QrandintVar, QuniformVar, RandintVar, UniformVar

def your_mixed_optimization_objective(x: tuple, *args: Any) -> float:
    return float(sum(x_i if isinstance(x_i, (int, float)) else len(str(x_i)) for x_i in (*x, *args)))

wrapped_objective = Objective(
            your_mixed_optimization_objective,
            variables=[
                ChoiceVar(["foobar", "baz"]),
                ChoiceVar([operator.index, abs, operator.invert]),
                GridVar([0.01, 0.1, 1, 10, 100]),
                GridVar(["good", "better", "best"]),
                RandintVar(-8, 10),
                QrandintVar(1, 10, 2),
                UniformVar(1.2, 3.4),
                QuniformVar(-11.1, 9.99, 0.22),
            ],
        )
bounds = wrapped_objective.bounds
optional_fixed_args = ("arg1", 2, 3.0)
optional_initial_decoded_guess = ("foobar", operator.invert, 10, "better", 0, 8, 2.33, 8.8)
optional_initial_encoded_guess = wrapped_objective.encode(optional_initial_decoded_guess)

result = scipy.optimize.differential_evolution(wrapped_objective, bounds=bounds, seed=0, args=optional_fixed_args, x0=optional_initial_encoded_guess)
cache_usage = wrapped_objective.cache_info
encoded_solution = result.x
decoded_solution = wrapped_objective.decode(encoded_solution)
assert result.fun == wrapped_objective(encoded_solution, *optional_fixed_args)
assert result.fun == your_mixed_optimization_objective(decoded_solution, *optional_fixed_args)

Output:

>>> bounds
((0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (-0.49999999999999994, 4.499999999999999), (-0.49999999999999994, 2.4999999999999996), (-8.499999999999998, 10.499999999999998), (1.0000000000000002, 10.999999999999998), (1.2, 3.4), (-11.109999999999998, 10.009999999999998))

>>> result
     fun: 23.21
     jac: array([0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 1.00000009,
       0.        ])
 message: 'Optimization terminated successfully.'
    nfev: 7944
     nit: 47
 success: True
       x: array([  0.22045614,   0.95317493,   0.22747255,   0.53879713,
         0.18086281,   0.222759  ,   0.33591717,  -8.29118977,
         1.77128301,   1.2       , -10.97230444])

>>> decoded_solution
('baz', <built-in function abs>, 0.01, 'good', -8, 2, 1.2, -11.0)

>>> your_mixed_optimization_objective(decoded_solution, *optional_fixed_args)
23.21

>>> cache_usage
CacheInfo(hits=146, misses=7798, maxsize=None, currsize=7798)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wrapdisc-2.5.0.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

wrapdisc-2.5.0-py3-none-any.whl (22.9 kB view details)

Uploaded Python 3

File details

Details for the file wrapdisc-2.5.0.tar.gz.

File metadata

  • Download URL: wrapdisc-2.5.0.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for wrapdisc-2.5.0.tar.gz
Algorithm Hash digest
SHA256 9c017b6bd85aef858539123d749398e5185e67832909803932f92a4171299db1
MD5 ad89325985feaa514d71fa228c6208e8
BLAKE2b-256 bef8a7b291e1e93f6050fd724bfc7824754fc34b995ae12998ed9b8ab1918bd2

See more details on using hashes here.

File details

Details for the file wrapdisc-2.5.0-py3-none-any.whl.

File metadata

  • Download URL: wrapdisc-2.5.0-py3-none-any.whl
  • Upload date:
  • Size: 22.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for wrapdisc-2.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 188d554d2e5a79bd9c998acb3db0c25e9ed6d84eb9396f66970b7c96d8ddad05
MD5 f31eb553a341b3e81f4797fe808cbf0a
BLAKE2b-256 789bdcce02886de2d24e201e8ba08647a4dc32274a82f335eebdcc7bda68032b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page