Whole Slide Image (WSI) Processing Library
Project description
Convert Helper for Histopathological / Cytopathological Machine Learning Tasks
Main Flow
- Scan some WSIs.
- Make some annotations with WSI annotation tools. (ASAP and SlideRunner v.1.31.0, QuPath v0.2.3 are now available. See wiki for details.)
- Then wsiprocess helps converting WSI + Annotation data into patches and easy-to-use annotation data.
WSIPatcher will give you GUI.
See Wiki for
- available applications for annotation,
- speed comparison between patched images and loading from raw WSIs,
- how to use the other annotatiion files.
Installation
pip User
-
Install openslide or libvips. See [wiki] for installation hints.
-
Install wsiprocess
pip install wsiprocess
Anaconda User
# Only for python 3.6 or higher
conda install -c tand826 wsiprocess
Documentation
Example
As a python module
- see examples
- see wsiprocess/cli.py to check the detailed flow.
As a command line tool
- see examples.
Available annotation tools
- ASAP
- SlideRunner version 1.31.0
- QuPath v0.2.3
- NDP.View2
- and your favorite tools with custom parser
details: wiki
Available WSIs
Test ongoing
-
From below we tested wsi data.
- :smile: => worked well.
- :umbrella: => did not work well.
- otherwise => did not check
-
Aperio
- CMU-1-JP2K-33005.svs
- :smile: CMU-1-Small-Region.svs
- :smile: CMU-1.svs
- CMU-2.svs
- CMU-3.svs
- JP2K-33003-1.svs
- JP2K-33003-2.svs
-
Generic-TIFF
- :umbrella:CMU-1.tiff
- Can not set magnification.
- :umbrella:CMU-1.tiff
-
Hamamatsu-vms
- :smile:CMU-1.zip
- CMU-2.zip
- CMU-3.zip
- Could not DOWNLOAD from http://openslide.cs.cmu.edu/download/openslide-testdata/Hamamatsu-vms/
-
Hamamatsu
- :smile:CMU-1.ndpi
- CMU-2.ndpi
- CMU-3.ndpi
- OS-1.ndpi
- OS-2.ndpi
- OS-3.ndpi
-
Leica
- :smile:Leica-1.scn
- Leica-2.scn
- Leica-3.scn
- Leica-Fluorescence-1.scn
-
Mirax
- CMU-1-Exported.zip
- CMU-1-Saved-1_16.zip
- CMU-1-Saved-1_2.zip
- :umbrella:CMU-1.zip
- Can not make the foreground mask.
- CMU-2.zip
- CMU-3.zip
- Mirax2-Fluorescence-1.zip
- Mirax2-Fluorescence-2.zip
- Mirax2.2-1.zip
- Mirax2.2-2.zip
- Mirax2.2-3.zip
- Mirax2.2-4-BMP.zip
- Mirax2.2-4-PNG.zip
-
Olympus
- OS-1.zip
- OS-2.zip
- OS-3.zip
-
Trestle
- :umbrella:CMU-1.zip
- ASAP can not show the image properly, and it's hard to annotate.
- CMU-2.zip
- CMU-3.zip
- :umbrella:CMU-1.zip
-
Ventana
- OS-1.bif
- OS-2.bif
-
:umbrella:Zeiss : Can not load slide - :umbrella:Zeiss-1-Merged.zvi - :umbrella:Zeiss-1-Stacked.zvi - :umbrella:Zeiss-2-Merged.zvi - :umbrella:Zeiss-2-Stacked.zvi - :umbrella:Zeiss-3-Mosaic.zvi - :umbrella:Zeiss-4-Mosaic.zvi
Test
Download sample WSI
curl -O -C - https://data.cytomine.coop/open/openslide/hamamatsu-ndpi/CMU-1.ndpi
Make random annotation
- Install ASAP ( Linux / Windows ) - https://github.com/computationalpathologygroup/ASAP/releases
- Open CMU-1.ndpi and make some random annotation. - Save the annotation xml as "CMU-1.xml".
Run test.py
cd tests
pytest tests.py
Citation
@software{takumi_ando_2022_5938308,
author = {Takumi Ando},
title = {tand826/wsiprocess: version 0.9},
month = feb,
year = 2022,
publisher = {Zenodo},
version = {v0.9},
doi = {10.5281/zenodo.5938308},
url = {https://doi.org/10.5281/zenodo.5938308}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file wsiprocess-1.1.1.tar.gz
.
File metadata
- Download URL: wsiprocess-1.1.1.tar.gz
- Upload date:
- Size: 38.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8e450092e552e623589caeacf196da8f925796b8f7cde9ad2d6fcc6ce2d91c3 |
|
MD5 | 0fa896c7ac33fccd641885bfb057a8f8 |
|
BLAKE2b-256 | e9d0795cf60e2a486ef7905702fb4ece5cea795d7343017cd1116f7287eade6e |
File details
Details for the file wsiprocess-1.1.1-py3-none-any.whl
.
File metadata
- Download URL: wsiprocess-1.1.1-py3-none-any.whl
- Upload date:
- Size: 48.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 99cba6dc3ac52aadff43fd6f940c8bb363781a1027efedb60cc6789123c2d053 |
|
MD5 | 8bab6444e397b29da9a55bdf80caaa3b |
|
BLAKE2b-256 | 328be3d1b4513b9d16fbf451c41ac06b27c64f486b2e7ef1ab40065dcfb36a9d |