Skip to main content

Package to convert WTForms to JSON Schema

Project description

WTForms JSONSchema 2

Build status

WTForms JSONSchema 2 is a converter to turn forms made with WTForms into a OrderedDict following the JSONSchema syntax.

It was developed independently of wtforms_jsonschema. Main differences are that it is unit tested, adds support for validators and is easier to extend. That being said, not all fields that are supported by wtforms_jsonschema are supported by wtforms_jsonschema2.

The order of the original WTForm fields are kept intact. The use case is to communicate these forms with other applications that will then display these forms. For instance a backend can make a simple CRUD application using Flask Appbuilder but also expose some forms to another frontend made in Angular or in a mobile app using Ionic.

JSONSchema is not specifically meant to be used to describe forms, but actually is quite extensive and provides enough flexibility to describe forms quite well. It supports limitations to fields, similar to validators, like email, url, date-time string formats, length limitations, minimum/maximum values for numbers, etc. For more info see Understanding JSON Schema by the Space Telescope Science Institute

Installation

Clone the repository form github and install it with

pip install wtforms_jsonschema2

If you also want Flask Appbuilder support, install with

pip install wtforms_jsonschema2[fab]

And if you want Geoalchemy2 support for Geometry columns in Flask Appbuilder, install with

pip install wtforms_jsonschema[geofab]

Testing

Unittests can be run with

python setup.py test

or

pytest

Usage

Here is an example how the package works:

from wtforms_jsonschema.base import BaseConverter
from wtforms.form import Form
from wtforms import validators
from wtforms.fields.core import StringField, DecimalField, SelectField, IntegerField, Field, DateTimeField
from wtforms.widgets import TextInput
from pprint import pprint


class SimpleTestForm(Form):
    """Simple Test Form displaying the conversion features"""
    first_name = StringField('First Name', validators=[validators.required()])
    nick_name = StringField('Nickname')
    age = IntegerField('Age', validators=[validators.number_range(0, 10),
                                          validators.required()])
    average = DecimalField('Average',
                           validators=[validators.number_range(10, 1000)])
    gender = SelectField("Gender", choices=['Male', 'Female', 'Alien',
                                            'Other'])
    some_field = SelectField("Bla", choices=[1, 2, 3])
    some_field2 = SelectField("Bla", choices=[1.5, 2.2, 3])
    email = StringField('Email Address', validators=[validators.Email()])
    length_string = StringField('Name', validators=[validators.Length(5, 10)])
    dt = DateTimeField('DateTime')

converter = BaseConverter()
pprint(converter.convert(SimpleTestForm))

Output:

OrderedDict([('type', 'object'),
             ('properties',
              OrderedDict([('first_name',
                            {'title': 'First Name', 'type': 'string'}),
                           ('nick_name',
                            {'title': 'Nickname', 'type': 'string'}),
                           ('age',
                            {'maximum': 10,
                             'minimum': 0,
                             'title': 'Age',
                             'type': 'integer'}),
                           ('average',
                            {'maximum': 1000,
                             'minimum': 10,
                             'title': 'Average',
                             'type': 'number'}),
                           ('gender',
                            {'enum': ['Male', 'Female', 'Alien', 'Other'],
                             'title': 'Gender',
                             'type': 'string'}),
                           ('some_field',
                            {'enum': [1, 2, 3],
                             'title': 'Bla',
                             'type': 'integer'}),
                           ('some_field2',
                            {'enum': [1.5, 2.2, 3],
                             'title': 'Bla',
                             'type': 'number'}),
                           ('email',
                            {'format': 'email',
                             'title': 'Email Address',
                             'type': 'string'}),
                           ('length_string',
                            {'maxLength': 10,
                             'minLength': 5,
                             'title': 'Name',
                             'type': 'string'}),
                           ('dt',
                            {'format': 'date-time',
                             'title': 'DateTime',
                             'type': 'string'})])),
             ('required', ['first_name', 'age'])])

Flask Appbuilder with its views is also supported. For example: The following model and views

        class Person(Model):
            id = Column(Integer, primary_key=True)
            name = Column(String)

        class Picture(Model):
            id = Column(Integer, primary_key=True)
            picture = Column(Text)
            person_id = Column(Integer, ForeignKey(person.id), nullable=False)
            person = relationship(Person, backref="pictures")

        class PictureView(ModelView):
            list_title = 'Pictures'
            add_title = 'Add Picture'
            edit_title = 'Edit Picture'
            show_title = 'Picture'
            datamodel = Picture
            add_columns = ['picture']

        class PersonView(ModelView):
            show_title = 'Person'
            edit_title = 'Edit Person'
            add_title = 'Add Person'
            list_title = 'People'
            datamodel = Person
            related_views = [PictureView]
            add_columns = ['name']

        converter.convert({'Person': PersonView})

Should result in the following schema:


        {
            "type": "object",
            "definitions": {
                "Person": {
                    "type": "object",
                    "properties": {
                        "name": {"type": "string"},
                        "pictures": {
                            "type": "array",
                            "title": "Pictures",
                            "items": [
                                {"$ref": "#/definitions/Picture"}
                            ]
                        }
                    }
                },
                "Picture": {
                    "type": "object",
                    "properties": {
                        "picture: {"type": "string"}
                    }
                }
            },
            "properties": {
                "Person": {"$ref": "#/definitions/Person"}
            }
        }

The library also supports the fab_addon_geoalchemy addon for Flask Appbuilder, which adds support for the PostGIS Geometry columns through the geoalchemy2 library for SQLAlchemy. An example:

from wtforms_jsonschema2.geofab import GeoFABConverter
from fab_addon_geoalchemy.models import Geometry, GeoSQLAInterface
from fab_addon_geoalchemy.views import GeoModelView
from flask_sqlalchemy import SQLA
from sqlalchemy import Column, Integer, String

app = Flask('myapp')
app.config.update(cfg)
db = SQLA(app)
appbuilder = AppBuilder(app, db.session)

class GeoObservation(db.Model):
    id = Column(Integer, primary_key=True)
    name = Column(String, nullable=False)
    location = Column(Geometry(geometry_type='POINT', srid=4326),
                      nullable=False)

    def __repr__(self):
        return self.name


class GeoObservationView(GeoModelView):
    datamodel = GeoSQLAInterface(GeoObservation)
    add_columns = ['name', 'location']
    show_title = 'GeoObservation'
    add_title = 'Add GeoObservation'


appbuilder.add_view(GeoObservationView, 'observations')

ctx = app.app_context()
ctx.push()
db.create_all()
db.session.commit()

converter = GeoFABConverter()
schema = converter.convert(GeoObservationView)
pprint(schema)

Output:

OrderedDict([
    ('type', 'object'),
    ('definitions', OrderedDict([
        ('GeoObservation', OrderedDict([
            ('type', 'object'),
            ('properties', OrderedDict([
                ('name', {
                    'type': 'string',
                    'title': 'Name'
                }),
                ('location', OrderedDict([
                    ('type', 'object'),
                    ('properties', OrderedDict([
                        ('lat', {
                            'type': 'number',
                            'title': 'Latitude',
                        }),
                        ('lon', {
                            'type': 'number',
                            'title': 'Longitude'
                        })
                    ])),
                    ('required', ['lat', 'lon']),
                    ('title', 'Location')
                ])),
            ])),
            ('required', ['name'])
        ]))
    ])),
    ('type', 'object'),
    ('properties', OrderedDict([
        ('GeoObservation', {'$ref': '#/definitions/GeoObservation'})
    ]))
])

Extending

The library is based around the wtforms_jsonschema2.base.BaseConverter class. This class has methods that are all decorated with @converts(*<classes>). These conversion methods return the tuple (fieldtype, options, required) which are a string, dict and boolean respectively that signify the JSONSchema type, additional parameters for the field like enum or other value restrictions derived from the validators and whether the field is required.

To support additional fields, either contribute back by adding functions to the BaseConverter class that convert your specific field, or create a new class that inherits from BaseConverter and adds functions for your specific field types.

This is an example for the DecimalField:

from wtforms.fields.core import DecimalField
from wtforms.validators import NumberRange
from wtforms_jsonschema.base import BaseConverter, converts

class MyConverter(BaseConverter):
    @converts(DecimalField)
    def decimal_field(self, field):
        fieldtype = 'number'
        options = {}
        required = False
        vals = dict([(v.__class__, v) for v in field.validators])
        required = self._is_required(vals)
        if NumberRange in vals.keys():
            options['minimum'] = vals[NumberRange].min
            options['maximum'] = vals[NumberRange].max
        return fieldtype, options, required

Credits

WTForms JSONSchema 2 is developed by Dolf Andringa, but was inspired by the sqlalchemy conversion component of Flask-Admin (especially the @converts decorator).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wtforms_jsonschema2-0.7.0.tar.gz (10.7 kB view details)

Uploaded Source

Built Distribution

wtforms_jsonschema2-0.7.0-py3.5.egg (25.0 kB view details)

Uploaded Source

File details

Details for the file wtforms_jsonschema2-0.7.0.tar.gz.

File metadata

  • Download URL: wtforms_jsonschema2-0.7.0.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.5.2

File hashes

Hashes for wtforms_jsonschema2-0.7.0.tar.gz
Algorithm Hash digest
SHA256 dde1678a50712bcd5a4bf16fdb17bdbec587b96511e7f6306d6c9238148b5843
MD5 437c3d997eb8fc3e9d2e15010134ae63
BLAKE2b-256 cca8b33725a0bd6c3f0ad2e7c082a0e2403e85b7d658a2baef3a84b18b91ccd3

See more details on using hashes here.

File details

Details for the file wtforms_jsonschema2-0.7.0-py3.5.egg.

File metadata

  • Download URL: wtforms_jsonschema2-0.7.0-py3.5.egg
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.5.2

File hashes

Hashes for wtforms_jsonschema2-0.7.0-py3.5.egg
Algorithm Hash digest
SHA256 4dade6b04a8492fa728ccb0597fccb39c1de083d264e023fa240e88beefe2676
MD5 a8a4a73ac508917c521facd47f1bc76d
BLAKE2b-256 042861839f953224c1fb6fd49abfd656a8be3358c4b8bcc717197e0b4bd74279

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page