Skip to main content

Wttch's train helper

Project description

wttch 的 AI 训练工具包

一、消息通知

1.1 钉钉 webhook 通知

钉钉 webhook 机器人API

from wttch.train.notification import DingtalkNotification

# 钉钉机器人 webhook 的链接
webhook_url = ''
# 消息签名的密钥
secret = ''

notification = DingtalkNotification(webhook_url, secret)

# 发送文本通知
notification.send_text("")
# 发送markdown
notification.send_markdown('')

1.2 企业微信 webhook 通知

企业微信机器人API

from wttch.train.notification import WechatNotification

# 企业微信机器人 webhook 的链接
webhook_url = ''
notification = WechatNotification(webhook_url)

# 发送文本通知
notification.send_text("")
# 发送markdown
notification.send_markdown('')

二、训练工具包

2.1 缓存工具

不需要修改太多代码就可以帮助你缓存数据到指定的缓存文件去。

(1). 添加 cache_wrapper; (2). 正常调用你的函数。

from wttch.train.utils import cache_wrapper

# 缓存的文件名字前缀,函数的参数会被添加到该名字后面
prefix = 'dataset'
# 缓存的文件夹位置
save_path = './dataset_cache'


@cache_wrapper(prefix=prefix, save_path=save_path)
def you_load_dataset_function():
    return {'a': 1, 'b': 2}


you_load_dataset_function()

2.2 计时器

from wttch.train.utils import StopWatch

stopwatch = StopWatch()
stopwatch.start("job 1")
# 费时操作
stopwatch.stop()
stopwatch.start("job 2")
# 费时操作
stopwatch.stop()

# 格式化打印
stopwatch.display()

三、torch 工具包

3.1 方便设备获取

(1). 将使用的设备写入 thread local; (2). 从 thread local 中获取设备数据; (3). 训练。

from wttch.train.torch.utils import try_gpu, get_device_local, set_device_local

# 尝试获取 gpu 并写入 thread local
set_device_local(try_gpu(device_no=0))

# 从 thread local 读取设备
device = get_device_local()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wttch-train-helper-0.0.8.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

wttch_train_helper-0.0.8-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file wttch-train-helper-0.0.8.tar.gz.

File metadata

  • Download URL: wttch-train-helper-0.0.8.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for wttch-train-helper-0.0.8.tar.gz
Algorithm Hash digest
SHA256 637d242ddda5624e5c82839c214e6c2a6d3ec7f7aaa6183be2c2f26e0f2d2e25
MD5 3f7edf612320c2f6d60865caff6c28fe
BLAKE2b-256 3b3920b37adf77ac5d3a1c29fac307c5b35603437a19b4e9ccfdf3da730c7734

See more details on using hashes here.

File details

Details for the file wttch_train_helper-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for wttch_train_helper-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 30e12a8185016fc659abc38fb2a8dc6d687112c71189c39f73a4b7f81ab9b5e5
MD5 de704416e7358b18e3218658156e66b7
BLAKE2b-256 db6f787357206ef7c5072a4a42772260e6c85e7f2956e79d0a120e6f1cf72c39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page