Skip to main content

Wttch's train helper

Project description

wttch 的 AI 训练工具包

一、消息通知

1.1 钉钉 webhook 通知

钉钉 webhook 机器人API

from wttch.train.notification import DingtalkNotification

# 钉钉机器人 webhook 的链接
webhook_url = ''
# 消息签名的密钥
secret = ''

notification = DingtalkNotification(webhook_url, secret)

# 发送文本通知
notification.send_text("")
# 发送markdown
notification.send_markdown('')

1.2 企业微信 webhook 通知

企业微信机器人API

from wttch.train.notification import WechatNotification

# 企业微信机器人 webhook 的链接
webhook_url = ''
notification = WechatNotification(webhook_url)

# 发送文本通知
notification.send_text("")
# 发送markdown
notification.send_markdown('')

二、训练工具包

2.1 缓存工具

不需要修改太多代码就可以帮助你缓存数据到指定的缓存文件去。

(1). 添加 cache_wrapper; (2). 正常调用你的函数。

from wttch.train.utils import cache_wrapper

# 缓存的文件名字前缀,函数的参数会被添加到该名字后面
prefix = 'dataset'
# 缓存的文件夹位置
save_path = './dataset_cache'


@cache_wrapper(prefix=prefix, save_path=save_path)
def you_load_dataset_function():
    return {'a': 1, 'b': 2}


you_load_dataset_function()

2.2 计时器

from wttch.train.utils import StopWatch

stopwatch = StopWatch()
stopwatch.start("job 1")
# 费时操作
stopwatch.stop()
stopwatch.start("job 2")
# 费时操作
stopwatch.stop()

# 格式化打印
stopwatch.display()

三、torch 工具包

3.1 方便设备获取

(1). 将使用的设备写入 thread local; (2). 从 thread local 中获取设备数据; (3). 训练。

from wttch.train.torch.utils import try_gpu, get_device_local, set_device_local

# 尝试获取 gpu 并写入 thread local
set_device_local(try_gpu(device_no=0))

# 从 thread local 读取设备
device = get_device_local()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wttch-train-helper-0.0.9.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

wttch_train_helper-0.0.9-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file wttch-train-helper-0.0.9.tar.gz.

File metadata

  • Download URL: wttch-train-helper-0.0.9.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for wttch-train-helper-0.0.9.tar.gz
Algorithm Hash digest
SHA256 fecb670b9cfc34cd3d7fb4f339e338628950c32874e455c86b084397edb74c7d
MD5 f534d7ac8480236eb43ce11cc77e3b2c
BLAKE2b-256 06f14c3862ff8dfa72e0261e6a5f5e8fb8722a335c9adec2134db760cf92c16a

See more details on using hashes here.

File details

Details for the file wttch_train_helper-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for wttch_train_helper-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 c7f461c557b6a1a39fbc5f17ec452cc7c3e7f042911430b519368909c9333d38
MD5 a5488c0993605f969e2f338335af71cd
BLAKE2b-256 990e1972e588f627649bba0d96d6e1805d597fcb52aa1ba48bc912f47f762838

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page