Skip to main content

W-Train Utils for MLflow

Project description

wtrainclient

가상환경 설정

pyenv install 3.8.18
pyenv virtualenv 3.8.18 wtrainclient3.8
pyenv activate wtrainclient3.8

mlflow, minio 실행

cd docker
docker-compose up -d --build

환경 변수 설정

프로젝트를 실행하기 전에 아래의 환경 변수들을 설정해야 합니다:

환경변수 설명 예시
PROFILE 개발/운영 환경설정, 개발환경에서는 모델을 실제로 업르도하지 않는다 운영: "prod" or "production", 개발: 그 외
MLFLOW_S3_ENDPOINT_URL MLflow가 저장소로 사용하고있는 MinIO 엔드포인트 URL http://localhost:9000
MLFLOW_TRACKING_URI MLflow 트래킹 서버의 URI http://localhost:5001
AWS_ACCESS_KEY_ID MinIO 서버 접근을 위한 AWS 호환 액세스 키 minio
AWS_SECRET_ACCESS_KEY MinIO 서버 접근을 위한 AWS 호환 시크릿 액세스 키 miniostorage
RABBIT_ENDPOINT_URL MinIO 서버에 모델 업로드 후 path 를 발행할 RMQ 엔드포인트 URL amqp://guest:guest@localhost:5672/
RABBIT_MODEL_UPLOAD_TOPIC 모델 업로드 path 를 전달할 토픽 train.model.uploaded
TRAIN_ID train_id (학습 서버에서 넣어주는 값) 1
MODEL_NAME model_name (학습 서버에서 넣어주는 값) my_model

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wtu-mlflow-0.0.15.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

wtu_mlflow-0.0.15-py3-none-any.whl (12.0 kB view details)

Uploaded Python 3

File details

Details for the file wtu-mlflow-0.0.15.tar.gz.

File metadata

  • Download URL: wtu-mlflow-0.0.15.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.18

File hashes

Hashes for wtu-mlflow-0.0.15.tar.gz
Algorithm Hash digest
SHA256 4c86300e91ee33395f009ac397d402a2a3786d71838236eb39f02913976c789e
MD5 3c4452a96ca5872563f874643133bbd6
BLAKE2b-256 eef0acebd304ecf42dfa0f41f9923253d7eaba615c1ed57e07c4e28dc3258045

See more details on using hashes here.

File details

Details for the file wtu_mlflow-0.0.15-py3-none-any.whl.

File metadata

  • Download URL: wtu_mlflow-0.0.15-py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.18

File hashes

Hashes for wtu_mlflow-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 4c0fa745daae7f7a9121da5437ae6a89f9d2d51c88668388a04489ac9cd22aba
MD5 0238a5ba0b096c5d2d5fcce9ebcbf9cf
BLAKE2b-256 eb8ac8cb4a57c9bcf29cb4209dee824a21c08148545cba9263fba6e916524e0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page