Skip to main content

Code for benchmarking image matchers on WxBS dataset

Project description

wxbs_benchmark

Install

pip install wxbs_benchmark

How to use

Task 1: fundamental matrix estimation

I will show you how to benchmark a simple baseline of OpenCV SIFT + MAGSAC++ below.

import numpy as np
import cv2
import kornia.feature as KF
import torch
from kornia_moons.feature import *
from tqdm import tqdm
from wxbs_benchmark.dataset import *
from wxbs_benchmark.evaluation import *
import matplotlib.pyplot as plt


def estimate_F_SIFT(img1, img2):
    det = cv2.SIFT_create(8000, contrastThreshold=-10000, edgeThreshold=10000)
    kps1, descs1 = det.detectAndCompute(img1, None)
    kps2, descs2 = det.detectAndCompute(img2, None)
    snn_ratio, idxs = KF.match_snn(torch.from_numpy(descs1),
                           torch.from_numpy(descs2), 0.9)
    tentatives = cv2_matches_from_kornia(snn_ratio, idxs)
    src_pts = np.float32([ kps1[m.queryIdx].pt for m in tentatives ]).reshape(-1,2)
    dst_pts = np.float32([ kps2[m.trainIdx].pt for m in tentatives ]).reshape(-1,2)
    F, _ = cv2.findFundamentalMat(src_pts, dst_pts, cv2.USAC_MAGSAC, 0.25, 0.999, 100000)
    return F


Fs = []
subset = 'test'
dset = WxBSDataset('.WxBS', subset=subset, download=True)
for pair_dict in tqdm(dset):
    Fs.append(estimate_F_SIFT(pair_dict['img1'],
                         pair_dict['img2']))
result_dict, thresholds = evaluate_Fs(Fs, subset)
100%|███████████████████████████████████████████| 32/32 [00:11<00:00,  2.67it/s]
plt.figure()
plt.plot(thresholds, result_dict['average'], '-x')
plt.ylim([0,1.05])
plt.xlabel('Thresholds')
plt.ylabel('Recall on GT corrs')
plt.grid(True)
plt.legend(['SIFT + MAGSAC++'])
<matplotlib.legend.Legend>

We can also check per-image-pair results

plt.figure(figsize=(10,10))
plt.ylim([0,1.05])
plt.xlabel('Thresholds')
plt.ylabel('Recall on GT corrs')
plt.grid(True)


for img_pair, recall in result_dict.items():
    plt.plot(thresholds, recall, '-x', label=img_pair)

plt.legend()
/opt/homebrew/Caskroom/miniforge/base/envs/python39/lib/python3.9/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.
  and should_run_async(code)

<matplotlib.legend.Legend>

F-estimation benchmark results

I have evaluated several popular methods in this Colab

Here is the resulting graphs. image.png

If you are interested in adding your methods - open an issue.

Task 2: finding the correspondence in image 2, given query point in image 1

Check this Colab for an example of running COTR on for the correspondence estimation given the query points.

Task 3: homography estimation on EVD

import numpy as np
import cv2
import kornia.feature as KF
import kornia as K
import torch
from kornia_moons.feature import *
from tqdm import tqdm
from wxbs_benchmark.dataset import *
from wxbs_benchmark.evaluation import *
import matplotlib.pyplot as plt


def estimate_H_DISK_LG(img1, img2):
    device = torch.device('cpu')
    config = {"depth_confidence": -1, "width_confidence": -1}
    lg = KF.LightGlueMatcher("disk", config).to(device=device).eval()
    num_features = 2048
    disk = KF.DISK.from_pretrained("depth").to(device)
    timg1 = K.image_to_tensor(img1, False).float()
    if timg1.shape[1] == 1:
        timg1 = K.color.grayscale_to_rgb(timg1)
    timg1 = K.geometry.resize(timg1, (600, 800), antialias=True).to(device)
    timg2 = K.image_to_tensor(img2, False).float()
    if timg2.shape[1] == 1:
        timg2 = K.color.grayscale_to_rgb(timg2)
    timg2 = K.geometry.resize(timg2, (600, 800), antialias=True).to(device)
    
    features1 = disk(timg1, num_features, pad_if_not_divisible=True)[0]
    features2 = disk(timg2, num_features, pad_if_not_divisible=True)[0]
    
    kps1, descs1 = features1.keypoints, features1.descriptors
    kps2, descs2 = features2.keypoints, features2.descriptors

    lafs1 = KF.laf_from_center_scale_ori(kps1[None], 96 * torch.ones(1, len(kps1), 1, 1, device=device))
    lafs2 = KF.laf_from_center_scale_ori(kps2[None], 96 * torch.ones(1, len(kps2), 1, 1, device=device))
    dists, idxs = lg(descs1, descs2, lafs1, lafs2, hw1=timg1.shape[2:], hw2=timg2.shape[2:])
    #snn_ratio, idxs = KF.match_smnn(descs1, descs2, 0.98)
    idxs = idxs.detach().cpu().numpy()
    
    src_pts = kps1.detach().cpu().numpy()[idxs[:,0]].reshape(-1,2)
    src_pts[:, 0] *= (img1.shape[1] / float(timg1.shape[3]) )
    src_pts[:, 1] *= (img1.shape[0] / float(timg1.shape[2]) )

    dst_pts = kps2.detach().cpu().numpy()[idxs[:,1]].reshape(-1,2)
    dst_pts[:, 0] *= (img2.shape[1] / float(timg2.shape[3]) )
    dst_pts[:, 1] *= (img2.shape[0] / float(timg2.shape[2]) )
    try:
        H, _ = cv2.findHomography(src_pts, dst_pts, cv2.USAC_MAGSAC, 0.5, 0.999, 100000)
    except:
        H = np.eye(3)
    if H is None:
        H = np.eye(3)
    return H


Hs = []

dset = EVDDataset('.EVD',  download=True)
for pair_dict in tqdm(dset):
    with torch.inference_mode():
        Hs.append(estimate_H_DISK_LG(pair_dict['img1'],
                                     pair_dict['img2']))
        
result_dict, thresholds = evaluate_Hs(Hs)
  0%|                                                    | 0/15 [00:00<?, ?it/s]  7%|██▉                                         | 1/15 [00:01<00:26,  1.90s/it] 13%|█████▊                                      | 2/15 [00:03<00:23,  1.80s/it] 20%|████████▊                                   | 3/15 [00:05<00:20,  1.74s/it] 27%|███████████▋                                | 4/15 [00:07<00:19,  1.73s/it] 33%|██████████████▋                             | 5/15 [00:08<00:16,  1.66s/it] 40%|█████████████████▌                          | 6/15 [00:10<00:15,  1.72s/it] 47%|████████████████████▌                       | 7/15 [00:12<00:13,  1.69s/it] 53%|███████████████████████▍                    | 8/15 [00:13<00:11,  1.71s/it] 60%|██████████████████████████▍                 | 9/15 [00:15<00:10,  1.71s/it] 67%|████████████████████████████▋              | 10/15 [00:17<00:08,  1.71s/it] 73%|███████████████████████████████▌           | 11/15 [00:18<00:06,  1.65s/it] 80%|██████████████████████████████████▍        | 12/15 [00:20<00:05,  1.84s/it] 87%|█████████████████████████████████████▎     | 13/15 [00:22<00:03,  1.79s/it] 93%|████████████████████████████████████████▏  | 14/15 [00:24<00:01,  1.75s/it]100%|███████████████████████████████████████████| 15/15 [00:25<00:00,  1.73s/it]

Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model
Loaded LightGlue model

Now plain DISK

def estimate_H_DISK_smnn(img1, img2):
    device = torch.device('cpu')
    num_features = 2048
    disk = KF.DISK.from_pretrained("depth").to(device)
    timg1 = K.image_to_tensor(img1, False).float()
    if timg1.shape[1] == 1:
        timg1 = K.color.grayscale_to_rgb(timg1)
    timg1 = K.geometry.resize(timg1, (600, 800), antialias=True).to(device)
    timg2 = K.image_to_tensor(img2, False).float()
    if timg2.shape[1] == 1:
        timg2 = K.color.grayscale_to_rgb(timg2)
    timg2 = K.geometry.resize(timg2, (600, 800), antialias=True).to(device)
    
    features1 = disk(timg1, num_features, pad_if_not_divisible=True)[0]
    features2 = disk(timg2, num_features, pad_if_not_divisible=True)[0]
    
    kps1, descs1 = features1.keypoints, features1.descriptors
    kps2, descs2 = features2.keypoints, features2.descriptors

    dists, idxs = KF.match_smnn(descs1, descs2, 0.98)
    idxs = idxs.detach().cpu().numpy()
    
    src_pts = kps1.detach().cpu().numpy()[idxs[:,0]].reshape(-1,2)
    src_pts[:, 0] *= (img1.shape[1] / float(timg1.shape[3]) )
    src_pts[:, 1] *= (img1.shape[0] / float(timg1.shape[2]) )

    dst_pts = kps2.detach().cpu().numpy()[idxs[:,1]].reshape(-1,2)
    dst_pts[:, 0] *= (img2.shape[1] / float(timg2.shape[3]) )
    dst_pts[:, 1] *= (img2.shape[0] / float(timg2.shape[2]) )
    try:
        H, _ = cv2.findHomography(src_pts, dst_pts, cv2.USAC_MAGSAC, 0.5, 0.999, 100000)
    except:
        H = np.eye(3)
    if H is None:
        H = np.eye(3)
    return H


Hs_plain = []

dset = EVDDataset('.EVD',  download=True)
for pair_dict in tqdm(dset):
    with torch.inference_mode():
        Hs_plain.append(estimate_H_DISK_smnn(pair_dict['img1'],
                                     pair_dict['img2']))
        
result_dict_plain, thresholds = evaluate_Hs(Hs_plain)
100%|███████████████████████████████████████████| 15/15 [00:17<00:00,  1.16s/it]
plt.figure()
plt.plot(thresholds, result_dict['average'], '-x')
plt.plot(thresholds, result_dict_plain['average'], '-o')

plt.ylim([0,1.05])
plt.xlabel('px thresholds')
plt.ylabel('mAA')
plt.title('Performance on EVD dataset')
plt.grid(True)
plt.legend(['DISK + LightGlue + MAGSAC++', 'DISK + MAGSAC++'])
<matplotlib.legend.Legend>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wxbs_benchmark-0.0.4.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

wxbs_benchmark-0.0.4-py3-none-any.whl (13.8 kB view details)

Uploaded Python 3

File details

Details for the file wxbs_benchmark-0.0.4.tar.gz.

File metadata

  • Download URL: wxbs_benchmark-0.0.4.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/6.6.0 pkginfo/1.7.0 requests/2.31.0 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.9.4

File hashes

Hashes for wxbs_benchmark-0.0.4.tar.gz
Algorithm Hash digest
SHA256 fd7e2c4d9a7ac1d679d7b68effc696bb7aaba0889e8782473952e418feee8577
MD5 f921ab06df1a72e26bbc77f3c4a25faa
BLAKE2b-256 455f738360f66cb819c46f7cd403fdf4d41c0949a12111b3cf5672402825ecae

See more details on using hashes here.

File details

Details for the file wxbs_benchmark-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: wxbs_benchmark-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 13.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/6.6.0 pkginfo/1.7.0 requests/2.31.0 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.9.4

File hashes

Hashes for wxbs_benchmark-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 86e644d9e8175bf598976c885ca105d25962cb362a04a1590f0ceef0eee58aa1
MD5 ac89ba82b7e4e8119976a0f575f0e245
BLAKE2b-256 91478b61c1094bf2b8c16578c1ffa128dc82067dd6f2c5548e8b612ae6a08f2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page