Skip to main content

Aggregating raster data over polygons

Project description

xagg

Binder

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample code run!

Installation

The easiest way to install xagg is using pip. Beware though - xagg is still a work in progress; I suggest you install it to a virtual environment first (using e.g. venv, or just creating a separate environment in conda for projects using xagg).

pip install xagg

Intro

Science often happens on grids - gridded weather products, interpolated pollution data, night time lights, remote sensing all approximate the continuous real world for reasons of data resolution, processing time, or ease of calculation.

However, living things don't live on grids, and rarely play, act, or observe data on grids either. Instead, humans tend to work on the county, state, township, okrug, or city level; birds tend to fly along complex migratory corridors; and rain- and watersheds follow valleys and mountains.

So, whenever we need to work with both gridded and geographic data products, we need ways of getting them to match up. We may be interested for example what the average temperature over a county is, or the average rainfall rate over a watershed.

Enter xagg.

xagg provides an easy-to-use (2 lines!), standardized way of aggregating raster data to polygons. All you need is some gridded data in an xarray Dataset or DataArray and some polygon data in a geopandas GeoDataFrame. Both of these are easy to use for the purposes of xagg - for example, all you need to use a shapefile is to open it:

import xarray as xr
import geopandas as gpd

# Gridded data file (netcdf/climate data)
ds = xr.open_dataset('file.nc')

# Shapefile
gdf = gpd.open_dataset('file.shp')

xagg will then figure out the geographic grid (lat/lon) in ds, create polygons for each pixel, and then generate intersects between every polygon in the shapefile and every pixel. For each polygon in the shapefile, the relative area of each covering pixel is calculated - so, for example, if a polygon (say, a US county) is the size and shape of a grid pixel, but is split halfway between two pixels, the weight for each pixel will be 0.5, and the value of the gridded variables on that polygon will just be the average of both [TO-DO: add visual example of this].

The two lines mentioned before?

import xagg as xa

# Get overlap between pixels and polygons
weightmap = xa.pixel_overlaps(ds,gdf)

# Aggregate data in [ds] onto polygons
aggregated = xa.aggregate(ds,weightmap)

# aggregated can now be converted into an xarray dataset (using aggregated.to_dataset()), 
# or a geopandas geodataframe (using aggregated.to_dataframe()), or directly exported 
# to netcdf, csv, or shp files using aggregated.to_csv()/.to_netcdf()/.to_shp()

Researchers often need to weight your data by more than just its relative area overlap with a polygon (for example, do you want to weight pixels with more population more?). xagg has a built-in support for adding an additional weight grid (another xarray DataArray) into xagg.pixel_overlaps().

Finally, xagg allows for direct exporting of the aggregated data in several commonly used data formats (please open issues if you'd like support for something else!):

  • netcdf
  • csv for STATA, R
  • shp for QGIS, further spatial processing

Best of all, xagg is flexible. Multiple variables in your dataset? xagg will aggregate them all, as long as they have at least lat/lon dimensions. Fields in your shapefile that you'd like to keep? xagg keeps all fields (for example FIPS codes from county datasets) all the way through the final export. Weird dimension names? xagg is trained to recognize all versions of "lat", "Latitude", "Y", "nav_lat", "Latitude_1"... etc. that the author has run into over the years of working with climate data; and this list is easily expandable as a keyword argumnet if needed.

Please contribute - let me know what works and what doesn't, whether you think this is useful, and if so - please share!

Use Cases

Climate econometrics

Many climate econometrics studies use societal data (mortality, crop yields, etc.) at a political or administrative level (for example, counties) but climate and weather data on grids. Oftentimes, further weighting by population or agricultural density is needed.

Area-weighting of pixels onto polygons ensures that aggregating weather and climate data onto polygons occurs in a robust way. Consider a (somewhat contrived) example: an administrative region is in a relatively flat lowlands, but a pixel that slightly overlaps the polygon primarily covers a wholly different climate (mountainous, desert, etc.). Using a simple mask would weight that pixel the same, though its information is not necessarily relevant to the climate of the region. Population-weighting may not always be sufficient either; consider Los Angeles, which has multiple significantly different climates, all with high densities.

xagg allows a simple population and area-averaging, in addition to export functions that will turn the aggregated data into output easily used in STATA or R for further calculations.

Left to do

  • Testing, bug fixes, stability checks, etc.
  • Share widely! I hope this will be helpful to a wide group of natural and social scientists who have to work with both gridded and polygon data!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xagg-0.1.3.tar.gz (20.1 kB view details)

Uploaded Source

Built Distribution

xagg-0.1.3-py3-none-any.whl (59.2 kB view details)

Uploaded Python 3

File details

Details for the file xagg-0.1.3.tar.gz.

File metadata

  • Download URL: xagg-0.1.3.tar.gz
  • Upload date:
  • Size: 20.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.7.9

File hashes

Hashes for xagg-0.1.3.tar.gz
Algorithm Hash digest
SHA256 71fca80d99c1789f6a41eca4f7ff494de5fb07f251d5d2978def050ba8e56aef
MD5 15471f58d9578795393a129ad86d18a7
BLAKE2b-256 8b74b71d418b7f8c81c6d3cfe72a7c5a15109dbf7621bf5415ea5f88565f72de

See more details on using hashes here.

File details

Details for the file xagg-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: xagg-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 59.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.7.9

File hashes

Hashes for xagg-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 99bfb7b29a2fbf8f268b1cc490f0eeecf0bde64f140d3131eca8e575ba221369
MD5 37d8f76be111917559a1a5faf1329d6a
BLAKE2b-256 7b01714df5a27e864b6b365560dc9dd2c1d00d1b7a4e5b88e15c10efcd1d56fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page