Xarray and OME-NGFF
Project description
xarray-ome-ngff
Integrating Xarray with OME-NGFF.
Help
See documentation for more details
Usage
Read OME-NGFF data
import zarr
from xarray_ome_ngff import read_multiscale_group, DaskArrayWrapper
group = zarr.open_group("https://uk1s3.embassy.ebi.ac.uk/idr/zarr/v0.4/idr0062A/6001240.zarr")
# this ensures that we create a Dask array, which gives us lazy loading
array_wrapper = DaskArrayWrapper(chunks=10)
arrays = read_multiscale_group(group, array_wrapper=array_wrapper)
print(arrays)
"""
{'0': <xarray.DataArray 'array-bb42996937dbff7600e0481e2b1572cc' (c: 2, z: 236,
y: 275, x: 271)>
dask.array<array, shape=(2, 236, 275, 271), dtype=uint16, chunksize=(2, 10, 10, 10), chunktype=numpy.ndarray>
Coordinates:
* c (c) float64 0.0 1.0
* z (z) float64 0.0 0.5002 1.0 1.501 2.001 ... 116.0 116.5 117.0 117.5
* y (y) float64 0.0 0.3604 0.7208 1.081 ... 97.67 98.03 98.39 98.75
* x (x) float64 0.0 0.3604 0.7208 1.081 ... 96.23 96.59 96.95 97.31, '1': <xarray.DataArray 'array-2bfe6d4a6d289444ca93aa84fcb36342' (c: 2, z: 236,
y: 137, x: 135)>
dask.array<array, shape=(2, 236, 137, 135), dtype=uint16, chunksize=(2, 10, 10, 10), chunktype=numpy.ndarray>
Coordinates:
* c (c) float64 0.0 1.0
* z (z) float64 0.0 0.5002 1.0 1.501 2.001 ... 116.0 116.5 117.0 117.5
* y (y) float64 0.0 0.7208 1.442 2.162 ... 95.87 96.59 97.31 98.03
* x (x) float64 0.0 0.7208 1.442 2.162 ... 94.42 95.15 95.87 96.59, '2': <xarray.DataArray 'array-80c5fc67c0c57909c0a050656a5ab630' (c: 2, z: 236,
y: 68, x: 67)>
dask.array<array, shape=(2, 236, 68, 67), dtype=uint16, chunksize=(2, 10, 10, 10), chunktype=numpy.ndarray>
Coordinates:
* c (c) float64 0.0 1.0
* z (z) float64 0.0 0.5002 1.0 1.501 2.001 ... 116.0 116.5 117.0 117.5
* y (y) float64 0.0 1.442 2.883 4.325 5.766 ... 92.26 93.7 95.15 96.59
* x (x) float64 0.0 1.442 2.883 4.325 5.766 ... 90.82 92.26 93.7 95.15}
"""
Create OME-NGFF data
import numpy as np
from xarray import DataArray
from xarray_ome_ngff import create_multiscale_group
from zarr import MemoryStore
base_array = DataArray(
np.zeros((10,10), dtype='uint8'),
coords={
'x': DataArray(np.arange(-5,5) * 3, dims=('x',), attrs={'units': 'meter'}),
'y': DataArray(np.arange(-10, 0) * 3, dims=('y',), attrs={'units': 'meter'})
})
# create a little multiscale pyramid
arrays = {
's0': base_array,
's1': base_array.coarsen({'x': 2, 'y': 2}, boundary='trim').mean().astype(base_array.dtype)
}
# This example uses in-memory storage, but you can use a
# different store class from `zarr`
store = MemoryStore()
group = create_multiscale_group(store=store, path='my_group', arrays=arrays)
print(group.attrs.asdict())
"""
{
'multiscales': (
{
'version': '0.4',
'name': None,
'type': None,
'metadata': None,
'datasets': (
{
'path': 's0',
'coordinateTransformations': (
{'type': 'scale', 'scale': (3.0, 3.0)},
{'type': 'translation', 'translation': (-15.0, -30.0)},
),
},
{
'path': 's1',
'coordinateTransformations': (
{'type': 'scale', 'scale': (6.0, 6.0)},
{'type': 'translation', 'translation': (-13.5, -28.5)},
),
},
),
'axes': (
{'name': 'x', 'type': 'space', 'unit': 'meter'},
{'name': 'y', 'type': 'space', 'unit': 'meter'},
),
'coordinateTransformations': None,
},
)
}
"""
# check that the arrays are there
print(tuple(group.arrays()))
"""
(('s0', <zarr.core.Array '/my_group/s0' (10, 10) uint8>), ('s1', <zarr.core.Array '/my_group/s1' (5, 5) uint8>))
"""
# write data to the arrays
for path, array in arrays.items():
group[path][:] = array.data
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
xarray_ome_ngff-3.1.1.tar.gz
(23.4 kB
view details)
Built Distribution
File details
Details for the file xarray_ome_ngff-3.1.1.tar.gz
.
File metadata
- Download URL: xarray_ome_ngff-3.1.1.tar.gz
- Upload date:
- Size: 23.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.26.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b0a012f32de7517f96bf7be37a913f1c69beb12b727806ed4f761ab3cdf9a182 |
|
MD5 | b4bcb881023fb569fbfea25a3ae17ef7 |
|
BLAKE2b-256 | db3e528a61df20598c31e7ec7e5a98a50fcdd9431475f35e180f74fb1fe510b8 |
File details
Details for the file xarray_ome_ngff-3.1.1-py3-none-any.whl
.
File metadata
- Download URL: xarray_ome_ngff-3.1.1-py3-none-any.whl
- Upload date:
- Size: 15.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.26.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b30286c249bbf7ffbb2ab4240ca5af03fd7b27a37ecf9e6220be51d16cc179b |
|
MD5 | 40fd96efe38a81d65486f844439bec95 |
|
BLAKE2b-256 | 4565a733c9f1c28cfa50ec566cdb09f5040304db52e121dfd5dd6ed46454c473 |