Skip to main content

Easily explore and access the SAR data products of the Copernicus Sentinel-1 satellite mission

Project description

xarray-sentinel

Easily explore and access the SAR data products of the Copernicus Sentinel-1 satellite mission in Python.

This Open Source project is sponsored by B-Open - https://www.bopen.eu.

Features

  • supports the following data products as distributed by ESA:
    • Sentinel-1 Single Look Complex (SLC):
      • Stripmap (SM) - alpha
      • Interferometric Wide Swath (IW) - alpha
      • Extra Wide Swath (EW) - alpha
      • Wave (WV) - technology preview
    • Sentinel-1 Ground Range Detected (GRD) SM/IW/EW/WV - technology preview
  • creates ready-to-use Xarray Datasets that map the data lazily and efficiently in terms of both memory usage and disk / network access - alpha
  • reads all SAR imagery data: GRD images, SLC swaths and SLC bursts - alpha
  • reads several metadata elements: satellite orbit and attitude, ground control points, radiometric calibration look up tables, Doppler centroid estimation and more - alpha
  • reads uncompressed and compressed SAFE data products on the local computer or on a network via fsspec - technology preview
  • allows larger-than-memory and distributed processing via dask - alpha

Overall the software is in the alpha phase and the usual caveats apply. A few features, identified as technology preview above, are not fully usable yet.

Install

The easiest way to install xarray-sentinel is in a conda environment. You may create a new environment, activate it, install the package and its dependencies with the following commands:

    conda create -n XARRAY-SENTINEL
    conda activate XARRAY-SENTINEL
    conda install -c conda-forge fsspec rioxarray xarray xmlschema
    pip install xarray-sentinel

Usage

The SAR data products of the Copernicus Sentinel-1 satellite mission are distributed in the SAFE format, composed of a few raster data files in TIFF and several metadata files in XML. The aim of xarray-sentinel is to provide a developer-friendly Python interface to all data and several metadata elements as Xarray Datasets in order to enable easy processing of SAR data into value-added products.

Due to the inherent complexity and redundancy of the SAFE format xarray-sentinel maps it to a tree of groups where every group may be opened as a Dataset, but it may also contain subgroups, that are listed in the subgroups attribute.

Open the root dataset

For example let's explore the Sentinel-1 SLC Stripmap product in the local folder ./S1A_S3_SLC__1SDV_20210401T152855_20210401T152914_037258_04638E_6001.SAFE. First we can open the SAR data product by passing the engine="sentinel-1" to xr.open_dataset and we can access the root group of the product, also known as /:

>>> import xarray as xr
>>> slc_sm_path = "./S1A_S3_SLC__1SDV_20210401T152855_20210401T152914_037258_04638E_6001.SAFE"
>>> xr.open_dataset(slc_sm_path, engine="sentinel-1")
<xarray.Dataset>
Dimensions:  ()
Data variables:
    *empty*
Attributes: ...
    constellation:              sentinel-1
    platform:                   sentinel-1a
    instrument:                 ['c-sar']
    sat:orbit_state:            ascending
    sat:absolute_orbit:         37258
    sat:relative_orbit:         86
    ...                         ...
    sar:product_type:           SLC
    xs:instrument_mode_swaths:  ['S3']
    group:                      /
    subgroups:                  ['S3', 'S3/VH', 'S3/VH/gcp', 'S3/VH/orbit', '...
    Conventions:                CF-1.8
    history:                    created by xarray_sentinel-...

The root Dataset does not contain any data variable, but only attributes that provides general information on the product and a description of the tree structure of the data. The attribute group contains the name of the current group and the subgroups attribute shows the names of all available groups below this one.

Open the measurements datasets

In order to open the other groups we need to add the keyword group to xr.open_dataset. So we can read the measurement by selecting the desired bean mode and the polarization, in this example the data contains the S3 beam mode and we select the VH polarization with group="S3/VH":

>>> xr.open_dataset(slc_sm_path, group="S3/VH", engine="sentinel-1")
<xarray.Dataset>
Dimensions:           (slant_range_time: 18998, azimuth_time: 36895)
Coordinates:
    pixel             (slant_range_time) int64 ...
    line              (azimuth_time) int64 ...
  * slant_range_time  (slant_range_time) float64 ...
  * azimuth_time      (azimuth_time) datetime64[ns] ...
Data variables:
    measurement       (azimuth_time, slant_range_time) complex64 ...
Attributes: ...
    sar:center_frequency:       5.40500045433435
    constellation:              sentinel-1
    platform:                   sentinel-1a
    instrument:                 ['c-sar']
    sat:orbit_state:            ascending
    sat:absolute_orbit:         37258
    ...                         ...
    sar:product_type:           SLC
    xs:instrument_mode_swaths:  ['S3']
    group:                      /S3/VH
    subgroups:                  ['gcp', 'orbit', 'attitude', 'dc_estimate', '...
    Conventions:                CF-1.8
    history:                    created by xarray_sentinel-...

The measurement variable contains the Single Look Complex measurements as a complex64 and it has dimensions slant_range_time and azimuth_time. The azimuth_time is a time coordinates that contains the zero-Dopper UTC time associated with the image line and slant_range_time is a np.float64 coordinate that contains the two-ways range time in seconds associated with image the pixel.

Open the metadata datasets

The measurement group contains several subgroups with metadata associated to the image, at the moment xarray-sentinel supports the following metadata datasets:

  • gcp from the <geolocationGridPoint> tags in the annotation XML
  • orbit from the <orbit> tags in the annotation XML
  • attitude from the <attitude> tags in the annotation XML
  • cd_estimate from the <dcEstimate> tags in the annotation XML
  • azimuth_fm_rate from the <azimuthFmRate> tags in the annotation XML
  • calibration from the <calibrationVector> tags in the calibration XML

For example the image calibration metadata associated with the S3/VH image can be read using group="S3/VH/calibration":

>>> xr.open_dataset(slc_sm_path, group="S3/VH/calibration", engine="sentinel-1")
<xarray.Dataset>
Dimensions:       (line: 22, pixel: 476)
Coordinates:
  * line          (line) int64 0 1925 3850 5775 7700 ... 34649 36574 38499 40424
  * pixel         (pixel) int64 0 40 80 120 160 ... 18880 18920 18960 18997
Data variables:
    azimuth_time  (line) datetime64[ns] ...
    sigmaNought   (line, pixel) float64 ...
    betaNought    (line, pixel) float64 ...
    gamma         (line, pixel) float64 ...
    dn            (line, pixel) float64 ...
Attributes: ...
    constellation:              sentinel-1
    platform:                   sentinel-1a
    instrument:                 ['c-sar']
    sat:orbit_state:            ascending
    sat:absolute_orbit:         37258
    sat:relative_orbit:         86
    ...                         ...
    xs:instrument_mode_swaths:  ['S3']
    group:                      /S3/VH/calibration
    Conventions:                CF-1.8
    title:                      Calibration coefficients
    comment:                    The dataset contains calibration information ...
    history:                    created by xarray_sentinel-...

Note that in this case the dimensions are line and pixel with coordinates corresponding to the sub-grid of the original image where it is defined the calibration Look Up Table.

The groups present in a typical Sentinel-1 SLC Stripmap product are:

/
└─ S3
   ├─ VH
   │  ├─ gcp
   │  ├─ orbit
   │  ├─ attitude
   │  ├─ dc_estimate
   │  ├─ azimuth_fm_rate
   │  └─ calibration
   └─ VV
      ├─ gcp
      ├─ orbit
      ├─ attitude
      ├─ dc_estimate
      ├─ azimuth_fm_rate
      └─ calibration

Advanced usage

Products representing the TOPS acquisition modes, IW and EW, are more complex because they contain several beam modes in the same SAFE package, but also because the measurement array is a collage of sub-images called bursts.

xarray-sentinel provides a helper function that crops a burst out of a measurement dataset for you.

You need to first open the desired measurement dataset, for example the VH polarisation of the first IW swath of the S1B_IW_SLC__1SDV_20210401T052622_20210401T052650_026269_032297_EFA4 product in the current folder:

>>> slc_iw_path = "./S1B_IW_SLC__1SDV_20210401T052622_20210401T052650_026269_032297_EFA4.SAFE"
>>> slc_iw1_vh = xr.open_dataset(slc_iw_path, group="IW1/VH", engine="sentinel-1")
>>> slc_iw1_vh
<xarray.Dataset>
Dimensions:           (pixel: 21632, line: 13509)
Coordinates:
  * pixel             (pixel) int64 0 1 2 3 4 ... 21627 21628 21629 21630 21631
  * line              (line) int64 0 1 2 3 4 5 ... 13504 13505 13506 13507 13508
    slant_range_time  (pixel) float64 ...
    azimuth_time      (line) datetime64[ns] ...
Data variables:
    measurement       (line, pixel) complex64 ...
Attributes: (12/20)
    sar:center_frequency:       5.40500045433435
    azimuth_steering_rate:      1.590368784
    number_of_bursts:           9
    lines_per_burst:            1501
    constellation:              sentinel-1
    platform:                   sentinel-1b
    ...                         ...
    sar:product_type:           SLC
    xs:instrument_mode_swaths:  ['IW1', 'IW2', 'IW3']
    group:                      /IW1/VH
    subgroups:                  ['gcp', 'orbit', 'attitude', 'dc_estimate', '...
    Conventions:                CF-1.8
    history:                    created by xarray_sentinel-...

Note that the measurement data for IW and EW acquisition modes can not be indexed by physical coordinates because of the collage nature of the image.

Now the 9th burst out of 9 can be cropped from the swath data using burst_index=8, via:

>>> import xarray_sentinel
>>> xarray_sentinel.crop_burst_dataset(slc_iw1_vh, burst_index=8)
<xarray.Dataset>
Dimensions:           (slant_range_time: 21632, azimuth_time: 1501)
Coordinates:
    pixel             (slant_range_time) int64 0 1 2 3 ... 21629 21630 21631
    line              (azimuth_time) int64 12008 12009 12010 ... 13507 13508
  * slant_range_time  (slant_range_time) float64 0.005343 0.005343 ... 0.005679
  * azimuth_time      (azimuth_time) datetime64[ns] 2021-04-01T05:26:46.27227...
Data variables:
    measurement       (azimuth_time, slant_range_time) complex64 ...
Attributes: (12/22)
    sar:center_frequency:       5.40500045433435
    azimuth_steering_rate:      1.590368784
    number_of_bursts:           9
    lines_per_burst:            1501
    constellation:              sentinel-1
    platform:                   sentinel-1b
    ...                         ...
    group:                      /IW1/VH
    subgroups:                  ['gcp', 'orbit', 'attitude', 'dc_estimate', '...
    Conventions:                CF-1.8
    history:                    created by xarray_sentinel-...
    azimuth_anx_time:           2210.634453
    burst_index:                8

Note that the helper function also performs additional changes like swapping the dimenstions to the physical coordinates and adding burst attributes.

As a quick way to access burst data you can add the burst_index to the group specification on open, for example group="IW1/VH/8". The burst groups are not listed in the subgroup attribute because they are not structural.

>>> xr.open_dataset(slc_iw_path, group="IW1/VH/8", engine="sentinel-1")
<xarray.Dataset>
Dimensions:           (slant_range_time: 21632, azimuth_time: 1501)
Coordinates:
    pixel             (slant_range_time) int64 ...
    line              (azimuth_time) int64 ...
  * slant_range_time  (slant_range_time) float64 0.005343 0.005343 ... 0.005679
  * azimuth_time      (azimuth_time) datetime64[ns] 2021-04-01T05:26:46.27227...
Data variables:
    measurement       (azimuth_time, slant_range_time) complex64 ...
Attributes: (12/22)
    sar:center_frequency:       5.40500045433435
    azimuth_steering_rate:      1.590368784
    number_of_bursts:           9
    lines_per_burst:            1501
    constellation:              sentinel-1
    platform:                   sentinel-1b
    ...                         ...
    group:                      /IW1/VH
    subgroups:                  ['gcp', 'orbit', 'attitude', 'dc_estimate', '...
    azimuth_anx_time:           2210.634453
    burst_index:                8
    Conventions:                CF-1.8
    history:                    created by xarray_sentinel-...

Design decisions

  • For datasets attributes ww aim at STAC Index and CF-Conventions compliance in this order.
  • We try to keep all naming as close as possible to the original names, in particular for metadata we use the names of the XML tags, only converting them to snake case.
  • We aim at opening available data and metadata even for partial SAFE packages, for example xarray-sentinel can open a measurement dataset even when the TIFF files of the other beam modes / polarization are missing.
  • Some accuracy considerations
    • azimuth_time can be expressed as np.datetime64[ns] because spatial resolution at LEO speed is 10km/s * 1ns ~= 0.001cm
    • slant_range_time on the other hand cannot be expressed as np.timedelta64[ns] because spatial resolution at the speed of light is 300_000km/s * 1ns / 2 ~= 15cm, that it is not enough for interferometric applications. slant_range_time needs a spatial resolution of 0.001cm at a 1_000km distance so around 1e-9 that is well within 1e-15 resolution of IEEE-754 float64.

Project badges

on-push codecov

Contributing

The main repository is hosted on GitHub, testing, bug reports and contributions are highly welcomed and appreciated:

https://github.com/bopen/xarray-sentinel

Lead developers:

Main contributors:

See also the list of contributors who participated in this project.

License

Copyright 2021-2022, B-Open Solutions srl and the xarray-sentinel authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xarray-sentinel-0.2rc3.tar.gz (4.7 MB view details)

Uploaded Source

Built Distribution

xarray_sentinel-0.2rc3-py3-none-any.whl (51.4 kB view details)

Uploaded Python 3

File details

Details for the file xarray-sentinel-0.2rc3.tar.gz.

File metadata

  • Download URL: xarray-sentinel-0.2rc3.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for xarray-sentinel-0.2rc3.tar.gz
Algorithm Hash digest
SHA256 f5de79f5edfcfd30bca1728bf726347e36ff11db05b420a7f470d42ca3748428
MD5 db3c6e0ea65268409ee8919a6485dbe8
BLAKE2b-256 62acb85042d9de2a26ff5c1cbc6b5d82028170d7508bbc14cd95e0bc326a2ca2

See more details on using hashes here.

Provenance

File details

Details for the file xarray_sentinel-0.2rc3-py3-none-any.whl.

File metadata

  • Download URL: xarray_sentinel-0.2rc3-py3-none-any.whl
  • Upload date:
  • Size: 51.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for xarray_sentinel-0.2rc3-py3-none-any.whl
Algorithm Hash digest
SHA256 4a1b368d6c0b412c187c801f8577605a95ff8df7af8efcf2792cc9622b571051
MD5 ac42277056f6745d4b8fd8385bccab09
BLAKE2b-256 5827d956981611eaac59a157436badde90398b5246933e71ce40ea2dab00fe74

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page