Skip to main content

xarray-based spatial analysis tools

Project description

:earth_africa: xarray-spatial: Raster-Based Spatial Analysis in Python

Build Status Build status PyPI version Downloads License


History of OS GIS Timeline


title

:round_pushpin: Fast, Accurate Python library for Raster Operations

:zap: Extensible with Numba

:fast_forward: Scalable with Dask

:confetti_ball: Free of GDAL / GEOS Dependencies

:earth_africa: General-Purpose Spatial Processing, Geared Towards GIS Professionals


Xarray-Spatial implements common raster analysis functions using Numba and provides an easy-to-install, easy-to-extend codebase for raster analysis.

Installation

# via pip
pip install xarray-spatial

# via conda
conda install -c conda-forge xarray-spatial

Downloading our starter examples and data

Once you have xarray-spatial installed in your environment, you can use one of the following in your terminal (with the environment active) to download our examples and/or sample data into your local directory.

xrspatial examples : Download the examples notebooks and the data used.

xrspatial copy-examples : Download the examples notebooks but not the data. Note: you won't be able to run many of the examples.

xrspatial fetch-data : Download just the data and not the notebooks.

In all the above, the command will download and store the files into your current directory inside a folder named 'xrspatial-examples'.

xarray-spatial grew out of the Datashader project, which provides fast rasterization of vector data (points, lines, polygons, meshes, and rasters) for use with xarray-spatial.

xarray-spatial does not depend on GDAL / GEOS, which makes it fully extensible in Python but does limit the breadth of operations that can be covered. xarray-spatial is meant to include the core raster-analysis functions needed for GIS developers / analysts, implemented independently of the non-Python geo stack.

Our documentation is still under constructions, but docs can be found here.

Raster-huh?

Rasters are regularly gridded datasets like GeoTIFFs, JPGs, and PNGs.

In the GIS world, rasters are used for representing continuous phenomena (e.g. elevation, rainfall, distance), either directly as numerical values, or as RGB images created for humans to view. Rasters typically have two spatial dimensions, but may have any number of other dimensions (time, type of measurement, etc.)

Supported Spatial Functions with Supported Inputs


Classification

Name NumPy xr.DataArray Dask xr.DataArray CuPy GPU xr.DataArray Dask GPU xr.DataArray
Equal Interval ✅️ ✅️
Natural Breaks ✅️ ✅️
Reclassify ✅️
Quantile ✅️ ✅️

Focal

Name NumPy xr.DataArray Dask xr.DataArray CuPy GPU xr.DataArray Dask GPU xr.DataArray
Apply ✅️ ✅️ ✅️
Hotspots ✅️ ✅️ ✅️
Mean ✅️ ✅️ ✅️
Focal Statistics ✅️ ✅️ ✅️

Multispectral

Name NumPy xr.DataArray Dask xr.DataArray CuPy GPU xr.DataArray Dask GPU xr.DataArray
Atmospherically Resistant Vegetation Index (ARVI) ✅️ ✅️ ✅️ ✅️
Enhanced Built-Up and Bareness Index (EBBI) ✅️ ✅️ ✅️ ✅️
Enhanced Vegetation Index (EVI) ✅️ ✅️ ✅️ ✅️
Green Chlorophyll Index (GCI) ✅️ ✅️ ✅️ ✅️
Normalized Burn Ratio (NBR) ✅️ ✅️ ✅️ ✅️
Normalized Burn Ratio 2 (NBR2) ✅️ ✅️ ✅️ ✅️
Normalized Difference Moisture Index (NDMI) ✅️ ✅️ ✅️ ✅️
Normalized Difference Vegetation Index (NDVI) ✅️ ✅️ ✅️ ✅️
Soil Adjusted Vegetation Index (SAVI) ✅️ ✅️ ✅️ ✅️
Structure Insensitive Pigment Index (SIPI) ✅️ ✅️ ✅️ ✅️

Pathfinding

Name NumPy xr.DataArray Dask xr.DataArray CuPy GPU xr.DataArray Dask GPU xr.DataArray
A* Pathfinding ✅️

Proximity

Name NumPy xr.DataArray Dask xr.DataArray CuPy GPU xr.DataArray Dask GPU xr.DataArray
Allocation ✅️
Direction ✅️
Proximity ✅️

Surface

Name NumPy xr.DataArray Dask xr.DataArray CuPy GPU xr.DataArray Dask GPU xr.DataArray
Aspect ✅️ ✅️ ✅️ ⚠️
Curvature ✅️ ⚠️
Hillshade ✅️ ✅️
Slope ✅️ ✅️ ✅️ ⚠️
Terrain Generation ✅️
Viewshed ✅️
Perlin Noise ✅️
Bump Mapping ✅️

Zonal

Name NumPy xr.DataArray Dask xr.DataArray CuPy GPU xr.DataArray Dask GPU xr.DataArray
Apply ✅️
Crop ✅️
Regions ✅️
Trim ✅️
Zonal Statistics ✅️
Zonal Cross Tabulate ✅️

Local

Name NumPy xr.DataArray Dask xr.DataArray CuPy GPU xr.DataArray Dask GPU xr.DataArray
Cell Stats ✅️
Combine ✅️
Lesser Frequency ✅️
Equal Frequency ✅️
Greater Frequency ✅️
Lowest Position ✅️
Highest Position ✅️
Popularity ✅️
Rank ✅️

Usage

Basic Pattern
import xarray as xr
from xrspatial import hillshade

my_dataarray = xr.DataArray(...)
hillshaded_dataarray = hillshade(my_dataarray)

Check out the user guide here.


title title

Dependencies

xarray-spatial currently depends on Datashader, but will soon be updated to depend only on xarray and numba, while still being able to make use of Datashader output when available.

title

Notes on GDAL

Within the Python ecosystem, many geospatial libraries interface with the GDAL C++ library for raster and vector input, output, and analysis (e.g. rasterio, rasterstats, geopandas). GDAL is robust, performant, and has decades of great work behind it. For years, off-loading expensive computations to the C/C++ level in this way has been a key performance strategy for Python libraries (obviously...Python itself is implemented in C!).

However, wrapping GDAL has a few drawbacks for Python developers and data scientists:

  • GDAL can be a pain to build / install.
  • GDAL is hard for Python developers/analysts to extend, because it requires understanding multiple languages.
  • GDAL's data structures are defined at the C/C++ level, which constrains how they can be accessed from Python.

With the introduction of projects like Numba, Python gained new ways to provide high-performance code directly in Python, without depending on or being constrained by separate C/C++ extensions. xarray-spatial implements algorithms using Numba and Dask, making all of its source code available as pure Python without any "black box" barriers that obscure what is going on and prevent full optimization. Projects can make use of the functionality provided by xarray-spatial where available, while still using GDAL where required for other tasks.

Contributors

  • @brendancol
  • @thuydotm
  • @jbednar
  • @pablomakepath
  • @kristinepetrosyan
  • @sjsrey
  • @giancastro
  • @ocefpaf
  • @rsignell-usgs
  • @marcozimmermannpm
  • @jthetzel
  • @chase-dwelle
  • @SAN154
  • @SapirLastimoza-Dooley
  • @lex-c

Cite our code:

makepath/xarray-spatial, https://github.com/makepath/xarray-spatial, ©2020.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xarray-spatial-0.2.5.tar.gz (79.0 MB view details)

Uploaded Source

Built Distribution

xarray_spatial-0.2.5-py3-none-any.whl (39.9 MB view details)

Uploaded Python 3

File details

Details for the file xarray-spatial-0.2.5.tar.gz.

File metadata

  • Download URL: xarray-spatial-0.2.5.tar.gz
  • Upload date:
  • Size: 79.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for xarray-spatial-0.2.5.tar.gz
Algorithm Hash digest
SHA256 f7fcb97fb1eb83bfb8a7b2e8385eeac2bfca5055a51f05045c702506f1eff9d6
MD5 dbb0649069238d83c123ce6cfdf7cd48
BLAKE2b-256 cb5f1cd7b8119e212ecd8f87fddcb722ce4a1579252d19b856b4d6a4dd481378

See more details on using hashes here.

File details

Details for the file xarray_spatial-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: xarray_spatial-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 39.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for xarray_spatial-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 f77eb6ef8c619a3594632be546b162eb5b4b018f543169958ad2264a3bd2d4a2
MD5 fc4b2e6ae27809e43af5acd6dfdd4c5a
BLAKE2b-256 97ba29a5428a8b24e65e4439a968ef717e95ff09cb688a982931f02e7eeb9017

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page