Skip to main content

xarray extension for handling units

Project description

xarray-units

Release Python Downloads DOI Tests

xarray extension for handling units

Overview

xarray-units is an import-only package that provides a xarray DataArray accessor .units for handling units such as converting units and numeric operations considering units. Astropy is used as a backend. Unlike similar implementations, xarray-units does not use a special data type to handle units, but uses the original data type in a DataArray. This allows to continue to use powerful features such as parallel and lazy processing with Dask and/or user-defined DataArray subclasses.

Installation

pip install xarray-units==0.5.0

Basic usages

Suppose the following imports will be commonly used in the examples:

import xarray as xr
import xarray_units

Setting and unsetting units

xarray-units sets units in DataArray attributes (.attrs) with the name "units":

da_km = xr.DataArray([1, 2, 3]).units.set("km")
print(da_km)
<xarray.DataArray (dim_0: 3)>
array([1, 2, 3])
Dimensions without coordinates: dim_0
Attributes:
    units:    km

And the units can also be unset (deleted):

da = da_km.units.unset()
print(da)
<xarray.DataArray (dim_0: 3)>
array([1, 2, 3])
Dimensions without coordinates: dim_0

[!NOTE] These are equivalent to manually un/setting the units in the DataArray attributes, but the units accessor also check that the units are valid when setting.

Converting units to others

xarray-units converts a DataArray with units to other units:

da_km = xr.DataArray([1, 2, 3]).units.set("km")
da_m = da_km.units.to("m")
print(da_m)
<xarray.DataArray (dim_0: 3)>
array([1000., 2000., 3000.])
Dimensions without coordinates: dim_0
Attributes:
    units:    m

Astropy equivalencies can also be used for equivalences between different units:

from astropy.units import spectral

da_mm = xr.DataArray([1, 2, 3]).units.set("mm")
da_GHz = da_mm.units.to("GHz", spectral())
print(da_GHz)
<xarray.DataArray (dim_1: 3)>
array([299.792458  , 149.896229  ,  99.93081933])
Dimensions without coordinates: dim_0
Attributes:
    units:    GHz

[!TIP] There exist other accessor methods (e.g. decompose, like) for converting units. See the package guide for more details.

Numeric operations considering units

xarray-units performs numerical operations considering units when the units accessor is attached to the DataArray on the left side of the operator:

da_m = xr.DataArray([1000, 2000, 3000]).units.set("m")
da_km = xr.DataArray([1, 2, 3]).units.set("km")

da_sum_m = da_m.units + da_km
da_sum_km = da_km.units + da_m

print(da_sum_m)
print(da_sum_km)
<xarray.DataArray (dim_0: 3)>
array([2000., 4000., 6000.])
Dimensions without coordinates: dim_0
Attributes:
    units:    m

<xarray.DataArray (dim_0: 3)>
array([2., 4., 6.])
Dimensions without coordinates: dim_0
Attributes:
    units:    km

The units of the DataArray after the operation follows those of the DataArray with the units accessor. The resulting data values will be therefore different depending on the order of the operation. They are, of course, equal when considering units:

da_eq = (da_sum_m.units == da_sum_km)
print(da_eq)
<xarray.DataArray (dim_0: 3)>
array([ True,  True,  True])
Dimensions without coordinates: dim_0

[!IMPORTANT] Because this feature is accessor-based, units are only considered for the operation right after the units accessor. See method and operation chains for performing multiple operations at once.

[!TIP] There exist accessor methods corresponding to each operator (e.g. add+, eq==). See the package guide for more details.

Formatting units

xarray-units converts units to various string formats:

da = xr.DataArray([1, 2, 3]).units.set("m / s^2")

da_console = da.units.format("console")
da_latex = da.units.format("latex")

print(da_console)
print(da_latex)
<xarray.DataArray (dim_0: 3)>
array([1, 2, 3])
Dimensions without coordinates: dim_0
Attributes:
    units:    m s^-2

<xarray.DataArray (dim_0: 3)>
array([1, 2, 3])
Dimensions without coordinates: dim_0
Attributes:
    units:    $\mathrm{\frac{m}{s^{2}}}$

This is useful, for example, when plotting a DataArray:

da.units.format("latex").plot()

[!NOTE] By default, the units of the DataArray coordinates will also be formatted.

Advanced usages

Handling units of coordinates

The units accessor has an option for handling units of DataArray coordinates. For example, the following code will create a DataArray with x and y coordinates in units of meters:

da_m = xr.DataArray([[1, 2], [3, 4]], dims=["x", "y"]).units.set("deg_C")
da_m = da_m.assign_coords(
    x=xr.DataArray([1000, 2000], dims="x").units.set("m"),
    y=xr.DataArray([3000, 4000], dims="y").units.set("m"),
)
print(da_m.x)
print(da_m.y)
<xarray.DataArray 'x' (x: 2)>
array([1000, 2000])
Coordinates:
  * x        (x) int64 1000 2000
Attributes:
    units:    m

<xarray.DataArray 'y' (y: 2)>
array([3000, 4000])
Coordinates:
  * y        (y) int64 3000 4000
Attributes:
    units:    m

To handling the units of the DataArray coordinates, use an option of for specifying them:

da_km = da_m.units(of=["x", "y"]).to("km")
print(da_km.x)
print(da_km.y)
<xarray.DataArray 'x' (x: 2)>
array([1., 2.])
Coordinates:
  * x        (x) float64 1.0 2.0
Attributes:
    units:    km

<xarray.DataArray 'y' (y: 2)>
array([3., 4.])
Coordinates:
  * y        (y) float64 3.0 4.0
Attributes:
    units:    km

where of accepts the name(s) of the coordinate(s).

Method and operation chains

The units accessor has an option chain for chaining methods or operations while considering units:

da_m = xr.DataArray([1, 2, 3]).units.set("m")
da_s = xr.DataArray([1, 2, 3]).units.set("s")
da_a = da_m.units(chain=2) / da_s / da_s
print(da_a)
<xarray.DataArray (dim_0: 3)>
array([1.        , 0.5       , 0.33333333])
Dimensions without coordinates: dim_0
Attributes:
    units:    m / s2

where chain is the number of chained methods or operations. This is equivalent to nesting the units accessors:

(da_m.units / da_s).units / da_s

Use with static type checking

xarray-units provides a special type hint xarray_units.DataArray with which type checkers can statically handle the units accessor and its methods:

from xarray_units import DataArray

da: DataArray = xr.DataArray([1, 2, 3]).units.set("km")

[!TIP] xarray_units.DataArray will be replaced by xarray.DataArray at runtime, so it can also be used for creating and subclassing DataArray.

Use without the units accessor

xarray-units provides a function xarray_units.units that returns the units accessor of a DataArray. The following two codes are therefore equivalent:

xr.DataArray([1, 2, 3]).units.set("km")
from xarray_units import units

units(xr.DataArray([1, 2, 3])).set("km")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xarray_units-0.5.0.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

xarray_units-0.5.0-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file xarray_units-0.5.0.tar.gz.

File metadata

  • Download URL: xarray_units-0.5.0.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Linux/6.2.0-1019-azure

File hashes

Hashes for xarray_units-0.5.0.tar.gz
Algorithm Hash digest
SHA256 b1d3d95eb7438dc0c8e64c07c6fae6790a9d7e4ecced75b6d5492d48e4c20ffd
MD5 03aabfa67385e0aa322d490c0cc93ef2
BLAKE2b-256 06e3226f29cc3d8ce5c24393e04ee560245b0155b92b11e1360e0fc97b3daa27

See more details on using hashes here.

File details

Details for the file xarray_units-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: xarray_units-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 10.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Linux/6.2.0-1019-azure

File hashes

Hashes for xarray_units-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 655179f97171f593449901ed7695253234899c4d2e4637ed9ed30765bfe02cd0
MD5 e4a9520020404039d9797233529bcdfc
BLAKE2b-256 d1f47cbd6bf2372e725b1ad07ef9ab6b0fba9d4670cdb14fe65bbab94c8d2235

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page