Skip to main content

Exact cover with colors

Project description

xcover

A python package for solving exact cover with colours problems.

Installation

This package can be installed using pip:

pip install xcover

The only dependency is numba.

Usage

A simple example of an exact cover problem is the following. Given the set of 6 options 0:={1, 4, 7}; 1:={1, 4}; 2:={4, 5, 7}; 3:={3, 5, 6}; 4:={2, 3, 6, 7}; 5:={2, 7}, each of which are subsets of a set of seven items (the numbers 1 to 7), find a subset of the options which contains each item once and only once. Such a problem can be solved using the package as

from xcover import covers

options = [[1, 4, 7], [1, 4], [4, 5, 7], [3, 5, 6], [2, 3, 6, 7], [2, 7]]
print(list(covers(options)))
[[1, 3, 5]]

which outputs a list of possible exact covers. In this case there is a single solution: cover by the options 1:={1, 4}, 3:={3, 5, 6}, and 5:={2, 7}.

The covers function returns a python generator, an object that can be used in a for loop. This is useful in the case of multiple solutions if you want to do something immediately with each solution as it is calculated. If you just want to find the next solution you can use the next function on the generator.

Exact cover with colours

The package supports two extensions to the standard exact cover problem. The first extension is the addition of secondary items. These are items that do not need to be covered, but may be covered once if required. The second extension is the ability to colour the secondary items in each option. In the coloured case the secondary item may be covered multiple times, so long as it is coloured the same way in each cover. A simple example of an exact cover with colours problem is the following

primary = ["p", "q", "r"]
secondary = ["x", "y"]
options = [
    ["p", "q", "x", "y:A"],
    ["p", "r", "x:A", "y"],
    ["p", "x:B"],
    ["q", "x:A"],
    ["r", "y:B"],
]

print(list(covers(options, primary=primary, secondary=secondary, colored=True)))
[[3, 1]]

In this problem there are three primary items p, q, and r that must be covered, and two secondary items x and y that may be covered. The exact cover is given by the two sets {p, r, x:A, y} and {q, x:A}. In this cover the item x is covered twice, but that is acceptable as both instances are colored A. The xcover package denotes the colouring of items by a colon followed by a label.

Boolean arrays

An alternative way of specifying an exact cover problem is in terms of a boolean incidence matrix. The package provides a covers_bool function for directly solving such problems.

import numpy as np
from xcover import covers_bool

matrix = np.array([
    [1, 0, 0, 1, 0, 0, 1],
    [1, 0, 0, 1, 0, 0, 0],
    [0, 0, 0, 1, 1, 0, 1],
    [0, 0, 1, 0, 1, 1, 0],
    [0, 1, 1, 0, 0, 1, 1],
    [0, 1, 0, 0, 0, 0, 1]
    ], dtype=bool)
print(next(covers_bool(matrix)))
[1, 3, 5]

Dancing cells

The algorithm used for finding the exact covers is Donald Knuth's algorithm C which uses "dancing cells". A full description of the algorithm can be found in his draft manuscript. The main algorithm is in xcover.dancing_cells.algorithm_c and can be called directly if desired.

Numba

To accelerate the performance of the solver this package uses numba to perform Just In Time (JIT) compilation of the main algorithm. This means the first call to the solver may be slow (a few seconds) while numba compiles the function. However, later calls will be fast, as numba uses a cache to avoid repeated compilation. JIT compilation can be disabled by explicitly configuring numba before importing the xcover package.

from numba import config
config.DISABLE_JIT = True

Applications

Many recreational mathematical puzzles can be naturally cast as exact cover problems. Examples include pentomino tiling, sudoku, and the n-queens problem. Donald Knuth's Art of Computing volume 4B has an extensive discussion of many such problems. Exact cover problems are NP-complete which means solve times can get very long very quickly as problems get larger. Be warned!

License

This package is licenced under the GNU Lesser General Public License v3.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xcover-0.1.3.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

xcover-0.1.3-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file xcover-0.1.3.tar.gz.

File metadata

  • Download URL: xcover-0.1.3.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for xcover-0.1.3.tar.gz
Algorithm Hash digest
SHA256 f58b42f57d00db8751a03b87f942fef2ae9444c5e0f1f972f39e16ca6d39429d
MD5 815af1ce32b23692697d093892f0e72b
BLAKE2b-256 702c81ecdf3db27b3aa1f314b86ab45a9526a9cc2d7bbb38292a2f823d814657

See more details on using hashes here.

File details

Details for the file xcover-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: xcover-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 11.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for xcover-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 93c15be01b915d2bf39d8228f2146b0a461ad4924e417b4a9a4f083cf096e2f3
MD5 db879f9b7ed5c139487e9871eda339de
BLAKE2b-256 cb034d304064036185d874768db153943b85549ee903041910c273e0733883ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page