Skip to main content

XCSF learning classifier system: rule-based evolutionary machine learning

Project description

XCSF learning classifier system

An implementation of the XCSF learning classifier system that can be built as a stand-alone binary or as a Python library. XCSF is an accuracy-based online evolutionary machine learning system with locally approximating functions that compute classifier payoff prediction directly from the input state. It can be seen as a generalisation of XCS where the prediction is a scalar value. XCSF attempts to find solutions that are accurate and maximally general over the global input space, similar to most machine learning techniques. However, it maintains the additional power to adaptively subdivide the input space into simpler local approximations.

See the project wiki for details on features, how to build, run, and use as a Python library.


License Linux Build MacOS Build Windows Build Latest Version DOI

Codacy LGTM CodeFactor Codiga SonarCloud Lines of Code

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xcsf-1.1.3.post1.tar.gz (6.2 MB view details)

Uploaded Source

Built Distributions

xcsf-1.1.3.post1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (405.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.1.3.post1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (405.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.1.3.post1-cp310-cp310-win_amd64.whl (362.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

xcsf-1.1.3.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (399.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xcsf-1.1.3.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (399.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xcsf-1.1.3.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (399.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xcsf-1.1.3.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (405.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

xcsf-1.1.3.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (405.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file xcsf-1.1.3.post1.tar.gz.

File metadata

  • Download URL: xcsf-1.1.3.post1.tar.gz
  • Upload date:
  • Size: 6.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.10

File hashes

Hashes for xcsf-1.1.3.post1.tar.gz
Algorithm Hash digest
SHA256 ae428bc943a89d33231f68b631d5050823ff988cf123bb1c4c7fc05c21a5f6ad
MD5 88832aef2cc58a92a0e4bbe3ecdb0f7f
BLAKE2b-256 a051f1a8729ee18f3b350fbe0c7e20d97084eca1df4a0471de2983d62ffa00dd

See more details on using hashes here.

File details

Details for the file xcsf-1.1.3.post1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.1.3.post1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b9509b0686d9b5a577d87a9182d00d4363bbfc982fde8491463f32900970345
MD5 5bcbf1870c5b3ee91e6a3b957848a952
BLAKE2b-256 ea9186b11bb5bfced0517a1fceacb9427535c1d1022fcd7fd222ff18879c4adb

See more details on using hashes here.

File details

Details for the file xcsf-1.1.3.post1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.1.3.post1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ed02d078a66db8b69f02c617f311a65cb49acafbebfd757a2cd8beb7ec156bf
MD5 568167f5e56c4b5a9ebcacd8433bd1d0
BLAKE2b-256 5a2a1c75972bbbd5642e7d35f3039907abd2b733f90e610257f3e0576d7bc2c6

See more details on using hashes here.

File details

Details for the file xcsf-1.1.3.post1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.1.3.post1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 362.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.10

File hashes

Hashes for xcsf-1.1.3.post1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1aa02479619fa77e76cc54d1c11c272da4f653f726f5dee4d6d90d68da3d0354
MD5 c154abc5a7d514feb6f1dc815e0c1602
BLAKE2b-256 e33d28f48e88752c98dfb3ca71cbab60f10059c809fcf3d60258e7d02ee25b84

See more details on using hashes here.

File details

Details for the file xcsf-1.1.3.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.1.3.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c3b6e3fc388f191ed17666b9d1195af63a6201304fd88e52d3087cb0ed83046
MD5 1c2d18ae8ad7ade987e7cf6a36bf2563
BLAKE2b-256 52f485fd4d19bc0e499a2eaa04e8c009a1bd7b46fa59305371d603659d6e5b9b

See more details on using hashes here.

File details

Details for the file xcsf-1.1.3.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.1.3.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b182227e6a3712d4e8190059cf412eac00060dd196451a899af351f90c4d0879
MD5 c254fb2f340d1b80c89b80783002450a
BLAKE2b-256 9ff38b20a4907cf9267f1bd6d8d8a63421006fcdc6b4ca64d992a0948a36b690

See more details on using hashes here.

File details

Details for the file xcsf-1.1.3.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.1.3.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66c9259adc1ef243770fa70621f2adb9bacb0c25bbd3939bdc1be38600e69dc7
MD5 b678821f5164f56f990c049df7a8a7eb
BLAKE2b-256 37f72cdae5798d602eb19d9b9cf902d6850436c22cad0c567d0263ff593d0b70

See more details on using hashes here.

File details

Details for the file xcsf-1.1.3.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.1.3.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6b15192db30b136e857842eddd2233e43d08c553e69cdf8ca0f5e577f74c67c
MD5 bde7896f928a1a7e3ffdb371685497d1
BLAKE2b-256 b89da747d412f48254d8b3cf30a594495d6544bf916938af98ebacde479a9a8d

See more details on using hashes here.

File details

Details for the file xcsf-1.1.3.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.1.3.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f84b28ea157ac11daea10b7408f1fbb8527150356697ab8df8c4e6962c9eb6b
MD5 33d9d2741041fd0524f85e8f64024895
BLAKE2b-256 3eb2196a28c91359f6bf47e2ac2fb3cd125c023f0e80e307c780bbb7fea3801f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page