Skip to main content

XCSF learning classifier system: rule-based evolutionary machine learning

Project description

XCSF learning classifier system

An implementation of the XCSF learning classifier system that can be built as a stand-alone binary or as a Python library. XCSF is an accuracy-based online evolutionary machine learning system with locally approximating functions that compute classifier payoff prediction directly from the input state. It can be seen as a generalisation of XCS where the prediction is a scalar value. XCSF attempts to find solutions that are accurate and maximally general over the global input space, similar to most machine learning techniques. However, it maintains the additional power to adaptively subdivide the input space into simpler local approximations.

See the project wiki for details on features, how to build, run, and use as a Python library.


License Linux Build MacOS Build Windows Build Latest Version DOI

Codacy LGTM CodeFactor Codiga SonarCloud Lines of Code

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xcsf-1.2.3.tar.gz (5.7 MB view details)

Uploaded Source

Built Distributions

xcsf-1.2.3-pp39-pypy39_pp73-win_amd64.whl (624.5 kB view details)

Uploaded PyPy Windows x86-64

xcsf-1.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (421.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.2.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (515.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

xcsf-1.2.3-pp38-pypy38_pp73-win_amd64.whl (624.6 kB view details)

Uploaded PyPy Windows x86-64

xcsf-1.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (422.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.2.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (516.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

xcsf-1.2.3-cp311-cp311-win_amd64.whl (625.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

xcsf-1.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (425.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xcsf-1.2.3-cp311-cp311-macosx_10_9_x86_64.whl (517.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xcsf-1.2.3-cp310-cp310-win_amd64.whl (625.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

xcsf-1.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (425.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xcsf-1.2.3-cp310-cp310-macosx_10_9_x86_64.whl (517.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xcsf-1.2.3-cp39-cp39-win_amd64.whl (625.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

xcsf-1.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xcsf-1.2.3-cp39-cp39-macosx_10_9_x86_64.whl (517.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xcsf-1.2.3-cp38-cp38-win_amd64.whl (626.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

xcsf-1.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (425.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xcsf-1.2.3-cp38-cp38-macosx_10_9_x86_64.whl (517.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file xcsf-1.2.3.tar.gz.

File metadata

  • Download URL: xcsf-1.2.3.tar.gz
  • Upload date:
  • Size: 5.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.3.tar.gz
Algorithm Hash digest
SHA256 9d3885c028a2427d895d3f31b68ba1cc41171e92bd01aa82031c963bcc6b4836
MD5 77ad04b125859294c205e2c1d785aac1
BLAKE2b-256 3f8ea96f776251d07df66595be5ccd59e1ecf18edadece42cd76cdcc0bc9ae78

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a91b7ee4bd4de8d729eabd11b8de915d69389fa37e56b1d82464e668c1f28a35
MD5 4fb8a3e5e53d167359a0a235938b91b4
BLAKE2b-256 f7a49d9e57931bad93dddeec4a5d5533c1696359697bc06150672068e6cc18ba

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6ff788e42965292ac019922e842425c64bb42bf08339e8273829e0b0509f713
MD5 913640ba27c8479ec3bafaa8e74e74a1
BLAKE2b-256 0bc159844d7882673774472e1b63e305875c7c5b9744cd7bacf7a1e8b31f4289

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 376505fd4e9769bd6e020d56518fe72941fe3c1314da711fd5e0e9ac8641f33b
MD5 da5c011d194c72025cc4100440e49901
BLAKE2b-256 3dbaf297586451ca2f30f2a8c1c46df849d984e406643f39889b39833843f538

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 45c9ba780293ba5dfffa72d9375c9c27fa5511a52e2370482efa7e92752550e4
MD5 b1dea1207f60104f0d9520b2ea7d8dc0
BLAKE2b-256 b0c6c89bf1a882544522d085e2025f8e46a0392a6829c53c5709557b0b002328

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dc28213463956226e027172807a34b1ee3bcdf3c3215c335d74acc8ffd360da
MD5 ceb25cb36527c44e2325980820ec1df9
BLAKE2b-256 c0ea917b9d1d10dc8cdd64a165509b784a43a35bf53ab75180a9133c1096dbf5

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51466a3798487422d8b37537d665c28739b70407f22a38c2226959d0c37ef248
MD5 b58b04b79289c614af5fa5fcf80f4115
BLAKE2b-256 dc2005a8d9ccd0f4f1ed4028a7872fa7cb434b64edf2b87e887d3a0443e4af60

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.2.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 625.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 128384f324a511be54f9aad7485616f7daabc4bca96b5cec1a14affe3433fcff
MD5 04d86d57bd22debf45e93fcf7cfce235
BLAKE2b-256 eddfdfa76954d949a76da035d621a208bc5e9f36c1c470fdc6fb113291433b8c

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17aa168ee265b8f63b8d29433b4814403db0a4f9b40b50f84681684cb9c5deca
MD5 0abeb153c14f53e366cc798691d13648
BLAKE2b-256 e87ce11612da744f14a67414d66d47c005918961d7af26869c5c407fa3bb6c16

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 10453e26224b705abef98c9f9f4123a939bf054636a21460ab3a4ad349bb7135
MD5 9bab6d964f5eb112473272cbfe02dd3c
BLAKE2b-256 29aca3cfaa79fde30142c2ea5bd8ebe6e812ecbf342971aa88e3616cac898c09

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.2.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 625.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0b2a9bd539674bb26ab0fc51d399178f07eb597c2bb79cd2fa70a8cc3357f2d4
MD5 91e56916e8dc2d5314b185d9823f7109
BLAKE2b-256 412ed2c8bfd63e0d9cf3b94e78c9ad5e36bc16de26769ce78e5d62945dd79b32

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94f2dfd2eca7ba58e2442fd56492ddafed6e07af6bf1b612afaf0e11b9f04f6b
MD5 7b175fb70f0065925064a5986feb34ce
BLAKE2b-256 5662a8a916d82fb2d9e9df0583d53e18c4c45766d08db7214c272a86173d7c95

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 878dda7605db2f98dd410938387348ed570bbf5fc441cf71b334c9f6f729dd09
MD5 7a7055f536f632c5bc9dfed92a2bead4
BLAKE2b-256 d547ee7bf4d49474d1d77c5c0255c9449e07683fa143f5539c6b5c97070af89f

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.2.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 625.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c57ffe7fb327499593490899656fa6154ffda79ae4127dd845be6a68facc7df6
MD5 cf34574fc9a378f5886e5dedc1b76f2c
BLAKE2b-256 c3be2b5353040dbbd87911bee60121a9943c1a73dac477928b4bccfd1731d2ff

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7589e1d8925c769786a44333855e04c87ffab16cd9385772778e8dcb61bedbf
MD5 65934218ce6b34a1c39e274278a552ed
BLAKE2b-256 2e22dbfbd102201f0284d12bad669e115ca458831ff828b68f74b5f001bbddc1

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4745a8580163ca4f5d750045a95e694cd420b8979025c03e3cf79b6c6bb53115
MD5 601a5ea3f2b2c800939f978be742000e
BLAKE2b-256 378ce116080afacbab07e8a1f76123354f694c1783d8a323bb6c84a64a7017cb

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.2.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 626.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0a0adafa9a5a7787a4f9cd46b817c42fbfe5acc004f4c9f6990f18a9d7040760
MD5 26520e3866f32eb3d0b2a104d3d8da59
BLAKE2b-256 4575574d67d7fbfcd7d1ef0ff06f5c1b1395ea6edee1b62c64b7f39dfaa91bcc

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a54c4a297deb919ffac814c53d7376b3c63b3d5dca09325a58b3b5c552592b4
MD5 b8778fa50a23f7ab67a2697dec093016
BLAKE2b-256 3b8e22acdb87599f8125b33f9bc7a41f88bfee44f25a0e52f959e853eebc8309

See more details on using hashes here.

File details

Details for the file xcsf-1.2.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 17232c4c3ff1ed7b4424bae91bad7c8eafa22526abf9d075bbfdf399d253965e
MD5 620a93eee7090777972b7a6caab5c069
BLAKE2b-256 2fb3845f8818ebc6f20a22c00347be8d1fce4d4726a6ec78a426760c60e3399e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page