Skip to main content

XCSF learning classifier system: rule-based evolutionary machine learning

Project description

XCSF learning classifier system

An implementation of the XCSF learning classifier system that can be built as a stand-alone binary or as a Python library. XCSF is an accuracy-based online evolutionary machine learning system with locally approximating functions that compute classifier payoff prediction directly from the input state. It can be seen as a generalisation of XCS where the prediction is a scalar value. XCSF attempts to find solutions that are accurate and maximally general over the global input space, similar to most machine learning techniques. However, it maintains the additional power to adaptively subdivide the input space into simpler local approximations.

See the project wiki for details on features, how to build, run, and use as a Python library.


License Linux Build MacOS Build Windows Build Latest Version DOI

Codacy LGTM CodeFactor Codiga SonarCloud Lines of Code

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xcsf-1.2.5.tar.gz (5.7 MB view details)

Uploaded Source

Built Distributions

xcsf-1.2.5-pp39-pypy39_pp73-win_amd64.whl (629.1 kB view details)

Uploaded PyPy Windows x86-64

xcsf-1.2.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (438.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.2.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (537.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

xcsf-1.2.5-pp38-pypy38_pp73-win_amd64.whl (629.3 kB view details)

Uploaded PyPy Windows x86-64

xcsf-1.2.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (438.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.2.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (537.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

xcsf-1.2.5-cp311-cp311-win_amd64.whl (631.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

xcsf-1.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (439.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xcsf-1.2.5-cp311-cp311-macosx_10_9_x86_64.whl (538.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xcsf-1.2.5-cp310-cp310-win_amd64.whl (631.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

xcsf-1.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (439.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xcsf-1.2.5-cp310-cp310-macosx_10_9_x86_64.whl (538.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xcsf-1.2.5-cp39-cp39-win_amd64.whl (631.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

xcsf-1.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (439.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xcsf-1.2.5-cp39-cp39-macosx_10_9_x86_64.whl (538.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xcsf-1.2.5-cp38-cp38-win_amd64.whl (631.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

xcsf-1.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (439.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xcsf-1.2.5-cp38-cp38-macosx_10_9_x86_64.whl (538.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file xcsf-1.2.5.tar.gz.

File metadata

  • Download URL: xcsf-1.2.5.tar.gz
  • Upload date:
  • Size: 5.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.5.tar.gz
Algorithm Hash digest
SHA256 dfd102e18cb688ef26985c479dfc6e182e9b4df3552889f420bca71387350cc9
MD5 31b00319584696787db7fcf878b99dc2
BLAKE2b-256 6a18cc2bc3d2aa04c9376b3ad290a3ce5691665d57b66091c5bd6072042a8120

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5c1ec912007f3c1650927739e045100fbe2e13a9730ce028c842c6ebafa6023a
MD5 b76a5052061668b823de2b34fa47265f
BLAKE2b-256 238a3268133cd932489ba664f2c2c1d20b26093429fbfa82baa1da777af4c6d5

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a9c437e5c2591f2682dde8ae9f9334489f520cc3718de7cca86f2610df099fe
MD5 624b470ea8bf9e8f4961560ccc27d4dd
BLAKE2b-256 317ecad4731c65223b1bf58a59a484d2c2318efacb643d5ee7050db17005cd6b

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a0b5b14362b6884e463c61a938b5474da4accbad2b27dacc430f263cf8eb2a74
MD5 78afcb99a622ef7af1e05e8c43ca3c77
BLAKE2b-256 0881e02bcae825350a715101bf7e01c245991ceff546fb4182ead41d3b57a32b

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c773c305e3eaf35002d6b45953152deb0458cc0ba72aaab8200b8f04f75da292
MD5 817f099c43ca4cb3d77a70b3fd05a29c
BLAKE2b-256 23fa1e1c6761321e9a721f075034e47835c7859da205d29954a877f0bf94a0ed

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 254e4798e78549bd0db4b02e26b64fead06ecbd24173745c12568e21a7f90602
MD5 dd0f70794689dfa62a048b99f4acce03
BLAKE2b-256 392d7c43b00e29126970691782d41fd720e7d58481ccb7d40512f6da8a19eb07

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e694e05a99c67ad23fec1a9aa4184cf9f3e80934e2e24822a90b5ba6aa39ebd
MD5 a189b0b4a811c94056d4b2738f4f66cf
BLAKE2b-256 5e5942c054909366f7ec54b45c7a3449773d058b58901633fdde717e03c42936

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.2.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 631.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 184abc6bad51b7e442109f9f3714e13a112ce95dc7caaf163482db85ad8b61e8
MD5 18d101d2c3b239b5c25d16d48fe36d53
BLAKE2b-256 ad14e2012755dea106da13daca569b61717e5fc6a8d8b37f803f56192c558e6c

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 90cbe1a6c713970cedb0cd6043d88560719c65fdd41252ed22d1ff21b8f20bd7
MD5 1403098b9a96868112fafa60afdd72b9
BLAKE2b-256 6d8564d7f6877eb68fd627ea96032442bb488f3891a8d8a90b0fc2697640430c

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f61fc939fd72339025e5fc1a325893a8e6e1dd5321755f11b07b9c269eb44c1c
MD5 759c7ef25842af96d159e4fc1d53df0f
BLAKE2b-256 6c1c3a8fd57a54da4c4cc3bd85e54326d76acdcce4653f866ad9a6ce589f5596

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.2.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 631.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3d701782cd3ddf69679536164146437415b924ac26917e8380500bdab9adc0e7
MD5 ec3d1f3ca8e878cee2f283937cc6c2c0
BLAKE2b-256 11a339db1bebd90afd5f3d8fc3e1b167f530244fba6ce05e19b8f0885b1e7d8c

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df17e89c512e496d16916e66fae62e4fd123200c9e856d7898b2dc67a6c6eeef
MD5 ce727e69d073d3686a8c1293a710788b
BLAKE2b-256 9b528be877cb7fc4890688e2cc60be542dbe89b6af733f7de7a87010d2dd9f60

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffa7ff96389d04b14c44ff00b217e3284f3349c05de71176ad2d9efbf8fafe57
MD5 cfd0b220f3079bee14ca6280c3aab9c5
BLAKE2b-256 a4970be4396ae55321e6ec33776cd1eb1cf8dba260739838859c9bb93ea7526d

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.2.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 631.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a94eb66e33077dccc8e4a0506f57f93b723c581b9170ec603a1ebbf8b0d8017d
MD5 c70720b57aaa19e78bd88fc530aa54ad
BLAKE2b-256 4cd327ffb3f324297b06cf8fd658c595c84956a6f7e2e7500ebfceb735d21e75

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5ef0dede95a03e0db51bbfd6fbb842aa62b4636bfcde006ba23105c520d1f91
MD5 c85cad51972bdf673bb695e7284cc95c
BLAKE2b-256 03a1a6f03dec275370cd446a6ed0a8e3d37d93ee21e39073c57a0c28392e4dd3

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 665560523fcf8e98ddf08bdc5a83b470e3de4992639682abfc58d7aa1129d494
MD5 459cd075568448b4b1c7f2fd692f33c6
BLAKE2b-256 e882a300e925e49e4ba3f7b8cd9046656289ad861c2676d9661f78ad96d866ce

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.2.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 631.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for xcsf-1.2.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1c247ac5f01ea3686c9308dd8c978b740327c76d17e37e589a5f4a37ba7738b7
MD5 e3fbb70b992bc85f58426416b213de11
BLAKE2b-256 b28aa093b400cebe54f070ecc5dacfa5cb9e83b15a0f4de5ad05ef1bc89f807e

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 877ef483924f02241319f592285e423afba4b05dda15711a6f27af9430165933
MD5 bc5cef31a6c5a6f77c08701821bb9af5
BLAKE2b-256 f7fd6050cdde877a2175dd4d4adacfc3a81055617a8838a5979956feaadfb041

See more details on using hashes here.

File details

Details for the file xcsf-1.2.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.2.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70bcb860c571a1de122744cc67bd44eff4cdd3657aef9039716f9c590820b510
MD5 2073309761926884c2eb3dcb5828500c
BLAKE2b-256 ed3c898021e58af629fb3191454debeefb96e6ac7843185770946ca3c5d06004

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page