Skip to main content

XCSF learning classifier system: rule-based evolutionary machine learning

Project description

XCSF learning classifier system

An implementation of the XCSF learning classifier system that can be built as a stand-alone binary or as a Python library. XCSF is an accuracy-based online evolutionary machine learning system with locally approximating functions that compute classifier payoff prediction directly from the input state. It can be seen as a generalisation of XCS where the prediction is a scalar value. XCSF attempts to find solutions that are accurate and maximally general over the global input space, similar to most machine learning techniques. However, it maintains the additional power to adaptively subdivide the input space into simpler local approximations.

See the project wiki for details on features, how to build, run, and use as a Python library.


License Linux Build MacOS Build Windows Build Latest Version DOI

Codacy CodeFactor SonarCloud codecov Lines of Code

PyPI package Python versions Downloads

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xcsf-1.4.4.tar.gz (5.7 MB view details)

Uploaded Source

Built Distributions

xcsf-1.4.4-pp310-pypy310_pp73-win_amd64.whl (648.0 kB view details)

Uploaded PyPy Windows x86-64

xcsf-1.4.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (456.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.4.4-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

xcsf-1.4.4-pp39-pypy39_pp73-win_amd64.whl (648.2 kB view details)

Uploaded PyPy Windows x86-64

xcsf-1.4.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (457.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.4.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

xcsf-1.4.4-pp38-pypy38_pp73-win_amd64.whl (647.5 kB view details)

Uploaded PyPy Windows x86-64

xcsf-1.4.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (456.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xcsf-1.4.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

xcsf-1.4.4-cp312-cp312-win_amd64.whl (656.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

xcsf-1.4.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (464.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

xcsf-1.4.4-cp312-cp312-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

xcsf-1.4.4-cp311-cp311-win_amd64.whl (657.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

xcsf-1.4.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (464.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xcsf-1.4.4-cp311-cp311-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xcsf-1.4.4-cp310-cp310-win_amd64.whl (656.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

xcsf-1.4.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (462.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xcsf-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xcsf-1.4.4-cp39-cp39-win_amd64.whl (656.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

xcsf-1.4.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (462.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xcsf-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xcsf-1.4.4-cp38-cp38-win_amd64.whl (655.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

xcsf-1.4.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (462.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xcsf-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file xcsf-1.4.4.tar.gz.

File metadata

  • Download URL: xcsf-1.4.4.tar.gz
  • Upload date:
  • Size: 5.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for xcsf-1.4.4.tar.gz
Algorithm Hash digest
SHA256 1d105dc6c83ed5f851c4870bb71cf9eab50b5d188676e63968db8516763318f1
MD5 a82b167822ed1f44e2ea1261465d99df
BLAKE2b-256 0466398aaab26923f4cdbe39e637b102e696c5148f146acdf92c649567e21683

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 245bf63ee6865c90aa606e2faec1f402f218ee946c79f73d457c3ab0d75485bc
MD5 b1a6f9676bda0dfa40bf67b08fa94717
BLAKE2b-256 e3f098882d9e2f1e55c9b605b06fdd861d7ed2e11ff95b2f78ff067b3d43b7b5

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb7a0e8df8ca5d0a5742f5892d90b06233b223f499497c047cf603fc4e8e1fd2
MD5 2a7eaa4691f16e1983a3d9828f29ad00
BLAKE2b-256 ef3da37fd27a23998931a41a473070f919bac61a43513e70e50812e7d38b1caf

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a822b031be52fc6c4b5c38328f75a1ca7d9617a42b9ad17468ce79ad5a65ad5
MD5 63ae92c6889e47abcfca6f5558a580a8
BLAKE2b-256 1afa58077995f5615395840b8bbe33e92f88ecfb39602d67d9b62f1c17b72428

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 816d306e112b04dd8cffd398f4172a24d5fd166a6fb9c81b211e8fdac9b6671c
MD5 d00ff666feab1d97c632a3f074b28d9d
BLAKE2b-256 67759083c5c25fb93182fcfd9d5d282a0879b2dcbbb790ee8c9d03c95fe5e1f8

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e70293c6a8d6d4d4f664f82e30f30004e8640e1bec8164a75abda96be39223ac
MD5 98075522668d13a0fcc2dd2ded0cd6bc
BLAKE2b-256 a5c40c521225d224342712595a7b390953349fce8212caff489c5c543e7de718

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 048dae2933129fd72f92404f4b606fde7f8d936f2a2582545f48dd03e94dc7c9
MD5 19d85f6a03f9d0a7ecd58ce00f746faf
BLAKE2b-256 f6e56fcb65ec65009f89f7c5cd86b51439ca19f010316c61d2b39c14ba89676b

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bb7269541805f09821d2e376d34e26293ec8e63ada55f1d09127703ee912e7e9
MD5 b797545ca176d976f5d51f30ce713d99
BLAKE2b-256 b7e470244775d67fcffaab2fa222afb4fd455d05dba34b119c55651849339bb5

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7d8f9ae10f355dc787d50914a659cae074337c305cdaeade4e638e8800be30e
MD5 c0ec4bd358064c93a745740c530ec345
BLAKE2b-256 cb8a2f050fcb28f5a5fb3311ba4c65de14644f66cf014b61e07172f0698d0144

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d148a576a6518fa16594b27e43c2604e3f6bdb784fccc82531789debe136c8a
MD5 5cfca3ba71f0bccf7d4ccca1fa76e2a7
BLAKE2b-256 dc01905dc4dd5fbbe0e6d9f65e7b13554fa71946858b14abe666eb490da085b3

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.4.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 656.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for xcsf-1.4.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 eebfacf1c80360fd3ac82ae1e8e38e742db1c531eb110d3a4c9465a0b6278670
MD5 b32a79103e17bc372a2c65767589f891
BLAKE2b-256 7745d303c917986ee86fbbbd03d2c1c7891b81a8a747857213ee76c52daf277d

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ae6f5ab746f8159ba3d702cf16fd10b853fd5baefd432d67a9ef8eb5cfed167
MD5 d1daa02cd8cc012e209ddb5d8d1c30a8
BLAKE2b-256 cf8de3e79b43ce414f6ba926d2c838e20a68b68ea53a3dbbe36de843c0374db2

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a901921dc27504e5aa3eac86b6a3a172fbe90455148629c9ff31124d4bc8410c
MD5 0cafc94b81bd63d9c356e9bf9909b707
BLAKE2b-256 5c23008eef661168fd56323739acc55a5fba4ddbf71123f5d6fc2f923ad6980c

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.4.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 657.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for xcsf-1.4.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e535dd939a237f79b0eef78cdd045f8e3b2c2abeb07440670c2b47c9bcd9d07e
MD5 31dcba1988fc9126019d933b883115b0
BLAKE2b-256 676070c28f588031c1d9a017a3ecc8eea16be2d332d95a778b837dd1a95780d6

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6eb083e02bd318a765fbe5ee760eccd75ad9502fec12e1ae5586ac5a4ff12c23
MD5 01f26199d49d193281d15552c8658b24
BLAKE2b-256 d11d966593fe01aae37d2bc10f98e277b342b8cc51c7abcf6e6201ec9eee97e7

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef56e9125d285d7333a8b7103e560590ded19f9b2e7354d3a5d4a69643ef1800
MD5 a79d7ee2297a308e032a0cf7ca676827
BLAKE2b-256 fa6e46363bd54d11c56cfd04c996e7a5f68173642639d7e7efcbbff014f44834

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.4.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 656.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for xcsf-1.4.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 491d75349cff8bb750bc021e9a257e7c0903a9247264b9f46f241b89ce5ec586
MD5 1afba053c16b36e35f5bffe94a8c6ade
BLAKE2b-256 cea43a30512367cb106d233c44b2cc1694d726516e390674dc4b87fa71f3846c

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59439e02e52706f4c28de1fe7e9d70e51f058c47d1cf829d3bcadc6deda295d9
MD5 90897ae0107f58f294d9d5ba3df9d3eb
BLAKE2b-256 7f83b37c3a116593ad6f7b2c0279d4d8a474980d6615e225401714f754163b0f

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16a7e1b23482fee2ef060d6bbdc7a461800089f9ae5eecbb36961b159dfe2618
MD5 aebc7a6ffa85b7609a66e11e2a7cd071
BLAKE2b-256 ee1a135ed69424f110a7496a27c55b790379163bfeafb435c896df4b1717b0fc

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.4.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 656.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for xcsf-1.4.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 67cb616496f3094e3ba84a0d5be1d0e8d6d3fab80b310a15aad0a9b7ee89001f
MD5 335617e97499943eac1eaebe724af801
BLAKE2b-256 65547068c531ba92558f17fb3b0486a3a8e7621a84186440ddb8b46fb0acec09

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7f36e0ab6ca6ecf2cc6e53c6a975fed41c2f1b6c5f33619830c17ec8eddd27e
MD5 77785802de91ef088fe843618ef0baef
BLAKE2b-256 ad3749849a228c3d7f7b5da98ccbcbb5e2057edbe9ccda44f634ba7ec63c9121

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1fc6f42d24b456a297def6d392b62ab9924c77353e70e2bb5c7480101cb6a30
MD5 31544a53b5b7491774b42f75e1f1f1e1
BLAKE2b-256 fe7d412267a3d1a991147b34abda3677f390b61b8e2f42d8d82aa02c79c9f808

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xcsf-1.4.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 655.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for xcsf-1.4.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 58edf324e253f951c3aebe70e660fdd7433f0688994e326678523a14fd0306bb
MD5 f0f6f04b890002ea8642540e857395ce
BLAKE2b-256 11455530ba4a01af440ccb35eeba326111a7fb015f5efd033af4e50da445a510

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 160b765e33f982ff263684904a3c7795640bc07267cf7865b8883903e8f7c797
MD5 bd1c64ec2a4d6edf6fd12c3f1f9f0bfe
BLAKE2b-256 1b329c9f08d7efd4cffcb9cf758fce2cbbdadff4e8595814d78eeae6b6635206

See more details on using hashes here.

File details

Details for the file xcsf-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xcsf-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf9bc04a3ed67c5fa923baf25167e36c2982efdcc2b4b3d57c2672820a7ee16c
MD5 8da151b5e0746f0d1b2e1575d199d256
BLAKE2b-256 9211e53ea25d7bc4c59b6aead938f999c01f3d1bed5e57dfa2b4d7491910444c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page