Skip to main content

An Rust-backed implementation of the Xenakis Sieve

Project description

xensieve-py

An implementation of the Xenakis Sieve, providing a Sieve from a string expression that filters integer sequences into iterators of integers, Boolean states, or interval widths. Sieves are built from Residuals, defined as a modulus (M) and a shift (S), notated M@S. Sieve string expressions, and Sieve structs, support complementation, intersection, symmetric difference, and union operations on Residuals with operators !, &, ^ and |, respectively.

The Xenakis Sieve is a tool for generating discrete interval patterns. Such patterns have boundless applications in creative domains: the Xenakis Sieve can be used to generate scales or multi-octave pitch sequences, rhythms and polyrhythms, and used to control countless other aspects of pictorial or architectural design.

This Python implementation wraps a Rust implementation and follows the Python implementation in Ariza (2005), with significant performance and interface enhancements: https://direct.mit.edu/comj/article/29/2/40/93957

Code: https://github.com/flexatone/xensieve-py

Rust Implementation

The Python implementation is built with PyO3, which wraps the Rust core library xensieve.

Code: https://github.com/flexatone/xensieve-rs

Docs: https://docs.rs/xensieve

Crate: https://crates.io/crates/xensieve

Strategies for Creating Sieves

First, we can examine the output of Sieves built from a single Residual. As shown above, a Residual is defined as a modulus (M) and a shift (S), notated M@S. In the diagram below, three Residuals are shown: 5@0, 4@2, and 30@10. As can be seen, for every M units, a value is articulated at the shift S. The final example shows an application of the unary inversion operator !30@10.

Residual diagram

Complex Sieves combine Residuals with logical operators such as complementation, intersection, symmetric difference, and union. In the example below, Residuals 5@0 and 4@2 are combined by union with the expression 5@0|4@2. Combining many Residuals by union is a practical approach to building sequences. The final example, (5@0|4@2)&!30@10, shows "removing" selected values from these unioned components by intersecting them with an inverted Residual (!30@10)

Sieve diagram

While all Sieves are, by definition, periodic, combinations of Residuals can result in sequences with great local complexity and inner patterning.

The xensieve.Sieve Inteface

The Sieves shown above can be created with xensieve.Sieve and used to produce iterators of integers, Boolean states, or interval widths. The Sieve constructor accepts arbitrarily complex Sieve expressions.

>>> from xensieve import Sieve

>>> s1 = Sieve("5@0")
>>> s2 = Sieve("30@10")
>>> s3 = Sieve("(5@0|4@2)&!30@10")

The iter_value() method takes a range (defined by start and stop integers) that can be used to "drive" the Sieve. The iterator yields the subset of integers contained within the Sieve.

>>> s1.iter_value(0, 50)
<builtins.IterValue object at 0x7f538abdb9c0>
>>> list(s1.iter_value(0, 50))
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> list(s2.iter_value(0, 50))
[10, 40]
>>> list(s3.iter_value(0, 50))
[0, 2, 5, 6, 14, 15, 18, 20, 22, 25, 26, 30, 34, 35, 38, 42, 45, 46]

The xensieve.Sieve features two alternative iterators to permit using Sieves in different contexts. The iter_state() iterator returns, for each provided integer, the resulting Boolean state.

>>> list(s1.iter_state(0, 10))
[True, False, False, False, False, True, False, False, False, False]
>>> list(s3.iter_state(0, 10))
[True, False, True, False, False, True, True, False, False, False]

The iter_interval() iterator returns, for sequential pairs of provided integers that are within the Sieve, the resulting interval.

>>> list(s2.iter_interval(0, 50))
[30]
>>> list(s3.iter_interval(0, 50))
[2, 3, 1, 8, 1, 3, 2, 2, 3, 1, 4, 4, 1, 3, 4, 3, 1]

The xensieve.Sieve instance implements __contains__() such that in can be used to test if arbitrary integers are contained within the Sieve:

>>> 5 in s1
True
>>> 6 in s1
False
>>> 10 in s3
False
>>> 30 in s3
True

The xensieve.Sieve instance supports the same operators permitted in Sieve expressions, such that instances can be combined to build complex Sieves.

>>> s4 = (Sieve("5@0") | Sieve("4@2")) & ~Sieve("30@10")
>>> s4
Sieve{5@0|4@2&!(30@10)}
>>> list(s4.iter_value(0, 100)) == list(s3.iter_value(0, 100))
True

What is New in xensieve

0.8.0

Updated Rust back-end to 0.8.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xensieve-0.8.0.tar.gz (9.6 kB view details)

Uploaded Source

Built Distributions

xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

xensieve-0.8.0-cp312-none-win_amd64.whl (146.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

xensieve-0.8.0-cp312-none-win32.whl (142.4 kB view details)

Uploaded CPython 3.12 Windows x86

xensieve-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

xensieve-0.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

xensieve-0.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

xensieve-0.8.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

xensieve-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

xensieve-0.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

xensieve-0.8.0-cp312-cp312-macosx_11_0_arm64.whl (259.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

xensieve-0.8.0-cp312-cp312-macosx_10_12_x86_64.whl (262.3 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

xensieve-0.8.0-cp311-none-win_amd64.whl (145.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

xensieve-0.8.0-cp311-none-win32.whl (141.9 kB view details)

Uploaded CPython 3.11 Windows x86

xensieve-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xensieve-0.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

xensieve-0.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

xensieve-0.8.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

xensieve-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xensieve-0.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

xensieve-0.8.0-cp311-cp311-macosx_11_0_arm64.whl (260.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

xensieve-0.8.0-cp311-cp311-macosx_10_12_x86_64.whl (262.8 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

xensieve-0.8.0-cp310-none-win_amd64.whl (145.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

xensieve-0.8.0-cp310-none-win32.whl (141.9 kB view details)

Uploaded CPython 3.10 Windows x86

xensieve-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xensieve-0.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

xensieve-0.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

xensieve-0.8.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

xensieve-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xensieve-0.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

xensieve-0.8.0-cp310-cp310-macosx_11_0_arm64.whl (260.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

xensieve-0.8.0-cp310-cp310-macosx_10_12_x86_64.whl (262.7 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

xensieve-0.8.0-cp39-none-win_amd64.whl (145.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

xensieve-0.8.0-cp39-none-win32.whl (142.0 kB view details)

Uploaded CPython 3.9 Windows x86

xensieve-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xensieve-0.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

xensieve-0.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

xensieve-0.8.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

xensieve-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xensieve-0.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

xensieve-0.8.0-cp38-none-win_amd64.whl (145.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

xensieve-0.8.0-cp38-none-win32.whl (142.7 kB view details)

Uploaded CPython 3.8 Windows x86

xensieve-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xensieve-0.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

xensieve-0.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

xensieve-0.8.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

xensieve-0.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xensieve-0.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

File details

Details for the file xensieve-0.8.0.tar.gz.

File metadata

  • Download URL: xensieve-0.8.0.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for xensieve-0.8.0.tar.gz
Algorithm Hash digest
SHA256 354146a410e8577612934025125788318ad58ae3a3cab3478f16098b142a9ae2
MD5 50127319aff39fffc0ba5092c8b82360
BLAKE2b-256 db02be3d0cd0322c6f443d2117b9e82f83f495cf198e6e934b9885e2dad1c058

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2655069d595ec9cd576aac2f65bd1ca7b68b5d366d04cfebdfd207f2fb303f46
MD5 26efa99812a8b473fb5dc44ef1b34329
BLAKE2b-256 d3aba928e0d2651dee4c15ba8f93cdee524d577b17c2be055cbe3d05fa8d2030

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 999cb3a7db741f743800ed89ae158687d7a8b404d5f26e2298cac8c6ff01235d
MD5 9d27ff54493a2850f5295562c1f80e5a
BLAKE2b-256 758aab0df8b41975de045e51eee4587e83138bd4c255fa9be68493e55e723c64

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d99ae43caa7f849aec1e7c89c73a2011accb47d783c375a4ade9d5c20f09cdca
MD5 93e945ea39e7db012995e2c23ec10404
BLAKE2b-256 b62cce3e1f12c83c7c4a600b0817a8aa6bbb868a35d3d599588bd18bba4bb8eb

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 cbd9ffc8d8288c7b6f6baef7c03616b4cde407e6071937f40de65a6965c9192f
MD5 6f984e93a5b6b81be5cadf5f5b9cdfc2
BLAKE2b-256 afb215f21bd3e801c80caa7584d2582c7ed2a4cd35eafb8da27f3ce862f4b2d4

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 05e7a9d774d9b192a5f4fd32e26e894042289661b162e3f3bba26253f07f4c83
MD5 f3e93dbcd3723e1f6906dc953b83f18a
BLAKE2b-256 5132f1d87de3abdae908c642e051f02e3f709ff8d8a8297735d2361eb7aed2c2

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1e0f6fd15b5ed5e5c39902adc9a011fceb0a6fce9c4149d487e9c162e8543af6
MD5 7a1bb8feea540d6eee8b650e72727bea
BLAKE2b-256 3c14fa325c46c07c416da9c289ebe8353e324fa77f5acf813fc9c5b860cc255e

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2955382cdbc719a531b661dbeb0c53dfe39d5c6914078eb84c3ce933d5f46e66
MD5 03b4d56377f6ed693deca16a9efa78db
BLAKE2b-256 64e3100423cf472a2ea2f6d2034aaf91835e0b50735ee33e010a3a4cb29c09bc

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c809873f7efd334ec2e56a306cb1f0886327c1a89a05089a3d1ed493a390d888
MD5 c6f8959f23c713dc59ac75cb4bd67a33
BLAKE2b-256 5614b9a2d88ee578acd571b89e11f1f937524567b451955efa1061e75a930bac

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c132aa5e90fbae102588468e1c1b83c9013a27f10c8796bb44c74c88dc769c0f
MD5 ed1d64338007fee90723397b95cbea5a
BLAKE2b-256 88fa7409a6d73411aa55739d61a1f3fd40ec57846c828202dc26db23dd10303d

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ada527d05a6b9093e36f6f5574bea5cfaf33cc9c6fb5738c00c108883a846aa2
MD5 9dce0b5fd08c76dcbb9ab2e2368983a0
BLAKE2b-256 bce91aa018c99a0703eecddc4b0af0c0203883b2abba547608fe1bc4955b588e

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f18aad146f839b29f051421dd5ee7fb4e132f55ccf0b2f4c9d00aa138707419
MD5 2275f67b277f6c1ffabe1b48e9968fc2
BLAKE2b-256 9559b717af75b3cee2844e0fdd0a749f42f26dc884154be328f5e91c75216b45

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ff82c4b1a023a75ab12b5e8a51429d97d979adcc72233f040de45be8a973fc9f
MD5 a1de45957a0f63a824236778988f9f2f
BLAKE2b-256 2d2b12e1c68347836021569fc3116e2c179f0104b2d457d0bcb717cc7d35778e

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef7f5df6c77f560a80bab683f86abbf9e334131eddd02603020c77c1f5c62994
MD5 4b900945be2e5da41b0901efb8083495
BLAKE2b-256 a2e654599ec50a9032a87dcbbd2db6e92303661c847e379ce0196990e38f6b51

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 98c7cbc20c994e60f056093eb7e4fa6f40eb391237f6c9931c753461c814bdaa
MD5 2725255ea8e0e1458142be8814e2697b
BLAKE2b-256 576f639604c8380debf5870646cc41b0e68f8041f387bbe90baaa1ed7ddfff99

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 080b3d68eda3027870ab01cab95eee74f53ca7564310c52119a4d284b3f63ad7
MD5 31262488aaa0cd7442e21149008ce321
BLAKE2b-256 6e1385a4e062581611d26f7703945bb02778619808035947eb424ede5f46051e

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8bc91974397c6a04cb93765f2d9def8266252985806353d753624bb4edbc2d11
MD5 5aecacbf495738b68735bc5a2927f9fa
BLAKE2b-256 6c684b6dd42666f077ea230d50d30ace2c261bb3a1eb6a94e7cfb01ab53c64c2

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c1c7a0714c72d18b4225e800b97985a145f69d940958759159e54cdf6d24301
MD5 64a045d48638c9df2a77fc80f1477cbd
BLAKE2b-256 61a42394083579e727e2d98b1313c71894be6faa8b3498a06c8d09ebca5ae87a

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 af723a05eb26a36a729644892769d2fa14e98fc5af1b5a0e784d7ba9b81c1a70
MD5 9b4b81b467bfcedca93e5702942e58f5
BLAKE2b-256 ac9569c8412d84fc0254772c39f4741554c664a6742f6b17806a637960d6be32

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 3a30e24a6c1fc9bd8cb71df1899b8b805527ae0b4f6595d22bd2f56d9a007f3f
MD5 50bac3b50b373e2d002d75da65fb94e4
BLAKE2b-256 ec2296277af97ff18285dfa2e1e4b9580db7a5f83d449c73fa8f708909b28447

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-none-win32.whl.

File metadata

  • Download URL: xensieve-0.8.0-cp312-none-win32.whl
  • Upload date:
  • Size: 142.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for xensieve-0.8.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 fae8aa92b8aea9ef2ce45feb64638756e62c91ae42fdad530106d9a63755063b
MD5 2ec37049256b46a1603bd13dc16a601f
BLAKE2b-256 71af62abae79ae7268700d0e3da7664836a8bfc6d33b4f263af7ab888f9cff34

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bd6c22959c2a75439f4cd0bd7b29d4c2b1fe5acda1ef70fdabbead645fa3506
MD5 3bb55ce13afbe39e4289a008f4c83498
BLAKE2b-256 2a33ea41e5a3f169ef7f39c87cf371e8a695aa55879f62a465ae799f1c2f9770

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 234ca4130e70bb9dbdf3c2884a7fe78817d4d306ce120f78fc38b8532e660850
MD5 9b08e368ca4a03fe133f27ace6801aa4
BLAKE2b-256 4fd568b99fe6d7164dcbd11a3c0a73902637b599eb9f1fdf400d2ae8e575a622

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fb6797f025c10ff8a3950286a5f1a4411aada1272557f11c1b102eb29b74b9f9
MD5 1118fa3e900c92deac80bd56d61f3505
BLAKE2b-256 80b5d00737ab663a7280c4c517a0b7601f83d7223923835ab5cb11105389f830

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 17a1af6cdcbb347cda13c1c5f99be5224e3112cd42e66e3ded62d8fc14fe2a66
MD5 9a14297917e0acacfd0804635e6b7efd
BLAKE2b-256 9f251f5a3638c4aead98d9064a931724745ebcd1fabd71a6751143646ee262b4

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b4fdeee5b13071a30bee0b54caa05d195f4680f53b7f70d152bde72590d601bb
MD5 37662945097648c3d54f8838abfd1bc3
BLAKE2b-256 c2844205183ab9828f316cd57103c7d6ea5ff93bf5da463508170754039b25df

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 457f90e3259183bba49a40114c3504b7a2c5e0bcca49d2b2f9913139cfc3b0b0
MD5 1c56d2954b4d1713542f1dee8785cb47
BLAKE2b-256 9d057300fc88914dac7db255bcc42c2866da6c3bf1b10098b832b45581a6b5b6

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f71547929e0cd088811d58fe29702ed782e9871edf8d44fb21b7215dd94383bb
MD5 dfa5972c5f8e12d62dbdcb35ef5b4329
BLAKE2b-256 b0b8ddba267f4c54af54b66f2ce96bc9e9feb2cd416c64155c50b7c2400b29ce

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 30fdfc5258698469eb3d38f684998bbcd36f93f03b9a7134ba349964834b3c9a
MD5 a04affa74599cba263633da7eb9816a1
BLAKE2b-256 08d7d7a12da7f6b4d5c136ab81fbfb74cf0727c263cdacde8fd8494b7f84f202

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 c353113fce06bb106075db854372191aa9c0a77fbac0adf154ee3a47647741cd
MD5 23ecbd3f6aa8fc719333c237987099a9
BLAKE2b-256 ba22c943d64a93d9b4a7383509114e4996426ace63cf4c200547138a6dc01045

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-none-win32.whl.

File metadata

  • Download URL: xensieve-0.8.0-cp311-none-win32.whl
  • Upload date:
  • Size: 141.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for xensieve-0.8.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 ebeab81577b5c90dded8a1ce5e89c39b83189ccbfe2bd92da7e00ecdcd02e8eb
MD5 1ab8b101eba94ac077664e791648bf1f
BLAKE2b-256 bc8ad71bd9b4584f3886d950938eb8e5766e3f571f754acb1e022d3f07561d9b

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3cbdd72b6451a61a621f38c07b17cd392fb2b1fba75444ff546faf3a8edb31bb
MD5 b024a0f8b3d11036521dcc32dc535163
BLAKE2b-256 a7d556ea76536c34026244b7fd22b522ca25d753f16fb9e3265103cfd6a6f4eb

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 844f75da5d46c86326e0d3ea342b0835fa3ba583a897352f6f9ed3a3a6a681de
MD5 d43f7a3fdfb5e69a4e302c67b961f3e3
BLAKE2b-256 f0c5ceec2602408753b982ce3881722bf27ef5192c519a133095f6b25aedd2bc

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 998d56a8b8e85b4606ec7164d3405f989f229b449ad807b5e75283f0a498020e
MD5 5cd8dcb73669f3ac2d827947a8d0a58d
BLAKE2b-256 80846a9379b9f7a14ac3d6f59bf7003e4355a28920a33ff8c99444de45c83cc8

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 595d9f3e8f6b3a26dc177d278aa24a497ba176b0529fb9bf43a65b977e99717c
MD5 de2b85766856476548f7f33e4a82602a
BLAKE2b-256 72f11ef9dd9313c69b36bc3a132abf287d4c65490f6d3fb6fe541c7d8a9c8677

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bea1a19f55a4752b44fe30a3f79514dbfedf75a0fd831a409d7ffd50f5ab77ab
MD5 abfaaf0d445db1eac3d4af0edec8ca1a
BLAKE2b-256 278c621d19dad6aa254de97ca608ffd72b0135222c019a6501c43a2cb46b7961

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9fc1b55bd60acb567d227d505c801408ac893b75d30d1f216fb918112234f207
MD5 cf222e8f612ee66406d3a7cfdbcedee1
BLAKE2b-256 9a8c1c961b8392f99f3751c43bed00c7bbc8060717aa50b79090c526b2105a0c

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e73ac3642f51f271593c8b16bb18a547c0c515036c717affb412c0d4d389b769
MD5 9eef9b4c9572d1dc932fb95e220b1345
BLAKE2b-256 25ba61167e38c767944d25db4a4be40d0fdf9b68c3c7a2b9a34b21e768aeea89

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 80c6a492aafcb23330da2d95ffc70dd9cb1f762783c6e77337de0d22107c866b
MD5 ac2fffe1f97991f13c3880bdb90092fd
BLAKE2b-256 46a870f16e1b96fabe088e2f67bd04fffed1a47e1156ad072c636e75e5385032

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 6a480e2a1a49c5c1d45e114b1bcca66b80e77262a732fe4ba533f9d8a989b456
MD5 3133090ae4cbc7eab18e6ab6c5a57e7b
BLAKE2b-256 d8b8eead0bec241af1385b2846d38f3b6e11f4889311fe3c8f72d20bcf8fea29

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-none-win32.whl.

File metadata

  • Download URL: xensieve-0.8.0-cp310-none-win32.whl
  • Upload date:
  • Size: 141.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for xensieve-0.8.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 0b4f8f0265b7a388e6aae4c17736ee91a9a82b1ce388b8ab23e771d75bd5574c
MD5 844d19f2aef8e2b2a59b906541b6d57d
BLAKE2b-256 d90efc47ac07ae91e9b195a5f4e0b7117265ffd06aed65bd27d20c429b432174

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b0858a2b4a5ab8d80d323d4ab3086c6c6a3204c89a22224b34dbc580836e9ab
MD5 b981df77bf6f53761fd894a4e32c9b0c
BLAKE2b-256 7db6baac63e0c05fc76ded0be768011a7b813bc0b97abbd337e288936541fc85

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 10e20fceca56b283a271de5bfcd5399d05d811fdb98444769551447e8632f0dd
MD5 ffad0b605f4ce6da17f2f7abec0bb978
BLAKE2b-256 e3a7c8f2acffad69b861b797d2c7b00d226df2d8a952526dacb9011b7234ad72

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c9593186d4f52870b46c1f1d35a705e97a48d3c0bdab066c7f440454a85cf75e
MD5 64d0f9dc0301aa6b6ca53f75f25d9614
BLAKE2b-256 bf4045279dbdf3ed63286b60ec2dcc83d4a67209192da41d21667e7488f29932

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 732d5458c0b0b73d1c122ba3c8254b74d6f9ebb4cd109cdeecc4cd03315e5fff
MD5 f23430bbf33e5183b832fe2e0f106cdb
BLAKE2b-256 84d6f38daea9a09c6446044e813ccdaa083eea71bcb3e04bdb107ff5537faa4c

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ee281944bbb463922984223b014384e33f39aee871e40b0620a828d4e28a052
MD5 764a7879f44bf8582dc89b34b855c9b4
BLAKE2b-256 35edff7e8dfd463d0923e5d81cab1ee6dc11f0c53cb6634bafd82c33c1c8fd6b

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 44d8723f913c402fbaab15a1dc51318fcb5a3106599e9de3d13e47f4c3d38319
MD5 06f092b53a1c10d9091fbe97f36a7b7d
BLAKE2b-256 e0281a2543a771b912e36a90af5d7d88899703a3066f7fda5528a8179a71fbbe

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ccff72b996c9ba10a848bcf444b58c72b9f65092a66e1033a202238e0668450
MD5 23e8f46ba2da3957db3be814185792b1
BLAKE2b-256 898cdcbf7a0db6294e9d3c7353bb7854ab88670c08217f12d8aaaa0e01887c2d

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 06ba3c09e61dacde79a93edb60a6cd41c55654f9a8d76c2a5644e0c77f74d692
MD5 02eacf0cc69204d143cd1315538e9228
BLAKE2b-256 79a32f47b75ff1a22e1daf87121696931485634dbec1cb1bfaee847632c3548e

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 6720ee6ffd536d8b4c08d20e4b747c4a891276f1df8a86499e8f580ac955c041
MD5 612c9192d1a469d603616aff08e02587
BLAKE2b-256 8667e7ff7aa22d5a9f218b6dc23e93f4381a806e54eff7d3cf58fc2df616ce70

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp39-none-win32.whl.

File metadata

  • Download URL: xensieve-0.8.0-cp39-none-win32.whl
  • Upload date:
  • Size: 142.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for xensieve-0.8.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 b86b24a382233b493c4ba57fe7361702112e4274549f5f3136c9a7583bc21a1d
MD5 fbea850c348771c681d1ff3f4aa03df2
BLAKE2b-256 2dca842c730046f9d47b40fd06dcb57c299ac9c0bf763eae13d2578d43767179

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca859a37d0c81cbd69e900accdb194e6685166e7ae001ce15c725daf4c985f3c
MD5 342516afdbc833e5da499be6ec4b97b0
BLAKE2b-256 970b1b827fa5b047076da7dd9e4644a9a03e7f2b20aad1ef9034db8c27b8afb7

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 14ee339c56bd319aa684a18a5e7b0d993869b8a8dfa49250f49288836ab210a4
MD5 541dcf477c869043a3fd442a17880ff1
BLAKE2b-256 7a364acfed29651927d664c8e3f49420f41e9496542f2792bf0dda903c381688

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b8f6799a123329feefc8ace294a453dd9985e1bb1cb2870bec5b04be41fa8b85
MD5 f54b01b274075e2b83ea68cde1f695e4
BLAKE2b-256 aa0c037537120a46f37f65b5b29611e6af1fca032420a6de7f2ee45c7716546c

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ed47b958e2f36c0bdf8638e0b68de2adac6b7867b9a8ec15f44ed2d9dc2d488d
MD5 d047ee0bd061cf3ee4db2eb23cc28a36
BLAKE2b-256 62581dce34fe8fc3dc79bab8bb953e3a498acb0fdeddf26a12e9890953d86f53

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6608d8f0345d13bb065353dd1b9b42cfcd77d4aa4cb0a0c159339eaa564728d2
MD5 952a0710b3a327838f2041d74ee2d313
BLAKE2b-256 9b87d28419bb980a30120558d5808d42f0262346015996c952376c9cd944a6c7

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 40c4fc66581fcd93033f3e85cb7489371ac045050001e7525d609d1019ab36b3
MD5 7040cc3bb92be1e5b5fb70396cf29222
BLAKE2b-256 5506c034f74ed03284b788e8d312ff4e7c709598e0456ab741f29bfae8563c25

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 b949cecb6832117db56e5732748d440a4642017dea88b526fdcdb488a6b47a92
MD5 be33b3ba81e3fb88e812fe8cf8624a3f
BLAKE2b-256 cb43fb4b1bebd523e50ef900fef99c905ef5e0a7810560e4ecb428bc86c95380

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp38-none-win32.whl.

File metadata

  • Download URL: xensieve-0.8.0-cp38-none-win32.whl
  • Upload date:
  • Size: 142.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for xensieve-0.8.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 e68b62ba67261c0f3c61e78109992d16d8206834884587fd8c058a07ae9de034
MD5 79e25b84fee31db5f5abf307f14d20aa
BLAKE2b-256 84601fb7a0d6d3efb12e234497c0c9234bc401d77d2cd84a7303b22a69160425

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 298b82c8318f75ec173854105f024ad8ddbffb80698ec04fd3706652e50371e9
MD5 087b8fda73ef7175cc26bbd48357cb23
BLAKE2b-256 25a61b836b758ee9014450f78391159eb93da6b1914dea1079b9fa59d025788e

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 16c654e14b78ca75e44a2bea4d2ddecbf503cf097f05f2f1457914b5be2ef6f7
MD5 4de7839c2fe13caed9222038f58040ad
BLAKE2b-256 ed41b497357a7cb89953d847244fadf49439e8f87b3bf8060f11bbf6f9a09806

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c207f22922d93336ebdb323b09a9127e7ff0ab1f01653a57854dad7962dc123e
MD5 3cbc94658c32bd4342c71344b826740d
BLAKE2b-256 c2f4f67fb73453354be5a209faf7b826d9fe2d99c64cf1a2bedf8fa48e663c23

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 62a38c5ea1f3206fe8e31d248692224d1730a73450cde14a83a3b387c5ea700d
MD5 3a16eb948e5b01fcc676d0cbc1004ef4
BLAKE2b-256 b2c6961401bda63043e101d7a6ebf92d913fa70a083df023e5d3ab958ddceab2

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aabd2a0ec3eceabe25712dda42b350982988167835125765f78274c9e1345bc8
MD5 ad553717060fabf8003c8a855815e199
BLAKE2b-256 1ee5220baea1f15577457074ec0a876df1c3ee86e4ec81528807dea4ee03dc34

See more details on using hashes here.

File details

Details for the file xensieve-0.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for xensieve-0.8.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1730d6faec3dd3ac6e0db907557a498ec1ec94125c5dde2816df0f54f244b1d6
MD5 7ff9830d30f864d5742134b0cc3ed93f
BLAKE2b-256 6d40ff44571382ced2a97518f93659f0fcfaa0faf3d57243c7e4b337dc627dd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page