Skip to main content

A simple tool for benchamrking and tracking machine learning models and experiments.

Project description

Xetrack

xetrack is a lightweight package to track experiments benchmarks, and monitor stractured data using duckdb and sqlite.
It is focuesed on simplicity and flexability.

You create a "Tracker", and let it track data. You can retrive it later as pandas or connect to it as a database.
Each instance of the tracker has a "track_id" which is a unique identifier for a single run.

Features

  • Simple
  • Embedded
  • Fast
  • Pandas-like
  • SQL-like
  • Object store with deduplication
  • CLI for basic functions
  • Multiprocessing reads and writes
  • Loguru logs integration
  • Experiment tracking
  • Model monitoring

Installation

pip install xetrack

Quickstart

from xetrack import Tracker

tracker = Tracker('database.db', 
                  params={'model': 'resnet18'}
                  )
tracker.log({"accuracy":0.9, "loss":0.1, "epoch":1}) # All you really need

tracker.latest
{'accuracy': 0.9, 'loss': 0.1, 'epoch': 1, 'model': 'resnet18', 'timestamp': '18-08-2023 11:02:35.162360',
 'track_id': 'cd8afc54-5992-4828-893d-a4cada28dba5'}


tracker.to_df(all=True)  # Retrive all the runs as dataframe
                    timestamp                              track_id     model  loss  epoch  accuracy
0  26-09-2023 12:17:00.342814  398c985a-dc15-42da-88aa-6ac6cbf55794  resnet18   0.1      1       0.9

Params are values which are added to every future row:

$ tracker.set_params({'model': 'resnet18', 'dataset': 'cifar10'})
$ tracker.log({"accuracy":0.9, "loss":0.1, "epoch":2})

{'accuracy': 0.9, 'loss': 0.1, 'epoch': 2, 'model': 'resnet18', 'dataset': 'cifar10', 
 'timestamp': '26-09-2023 12:18:40.151756', 'track_id': '398c985a-dc15-42da-88aa-6ac6cbf55794'}

You can also set a value to an entire run with set_value ("back in time"):

tracker.set_value('test_accuracy', 0.9) # Only known at the end of the experiment
tracker.to_df()

                    timestamp                              track_id     model  loss  epoch  accuracy  dataset  test_accuracy
0  26-09-2023 12:17:00.342814  398c985a-dc15-42da-88aa-6ac6cbf55794  resnet18   0.1      1       0.9      NaN            0.9
2  26-09-2023 12:18:40.151756  398c985a-dc15-42da-88aa-6ac6cbf55794  resnet18   0.1      2       0.9  cifar10            0.9

Track functions

You can track any function.

  • The return value is logged before returned
tracker = Tracker('database.db', 
    log_system_params=True, 
    log_network_params=True, 
    measurement_interval=0.1)
image = tracker.track(read_image, *args, **kwargs)
tracker.latest
{'result': 571084, 'name': 'read_image', 'time': 0.30797290802001953, 'error': '', 'disk_percent': 0.6,
 'p_memory_percent': 0.496507, 'cpu': 0.0, 'memory_percent': 32.874608, 'bytes_sent': 0.0078125,
 'bytes_recv': 0.583984375}

Or with a wrapper:

@tracker.wrap(params={'name':'foofoo'})
def foo(a: int, b: str):
    return a + len(b)

result = foo(1, 'hello')
tracker.latest
{'function_name': 'foo', 'args': "[1, 'hello']", 'kwargs': '{}', 'error': '', 'function_time': 4.0531158447265625e-06, 
 'function_result': 6, 'name': 'foofoo', 'timestamp': '26-09-2023 12:21:02.200245', 'track_id': '398c985a-dc15-42da-88aa-6ac6cbf55794'}

Track assets (Oriented for ML models)

When you attempt to track a non primitive value which is not a list or a dict - xetrack saves it as assets with deduplication and log the object hash:

  • Tips: If you plan to log the same object many times over, after the first time you log it, just insert the hash instead for future values to save time on encoding and hashing.
$ tracker = Tracker('database.db', params={'model': 'logistic regression'})
$ lr = Logisticregression().fit(X_train, y_train)
$ tracker.log({'accuracy': float(lr.score(X_test, y_test)), 'lr': lr})
{'accuracy': 0.9777777777777777, 'lr': '53425a65a40a49f4',  # <-- this is the model hash
    'dataset': 'iris', 'model': 'logistic regression', 'timestamp': '2023-12-27 12:21:00.727834', 'track_id': 'wisteria-turkey-4392'}

$ model = tracker.get('53425a65a40a49f4') # retrive an object
$ model.score(X_test, y_test)
0.9777777777777777

You can retrive the model in CLI if you need only the model in production and mind carring the rest of the file

# bash
xt assets export database.db 53425a65a40a49f4 model.cloudpickle
# python
import cloudpickle
with open("model.cloudpickle", 'rb') as f:
    model = cloudpickle.loads(f.read())
# LogisticRegression()

Tips and tricks

  • Tracker(Tracker.IN_MEMORY) Let you run only in memory - great for debuging or working with logs only

Pandas-like

print(tracker)
                                    _id                              track_id                 date    b    a  accuracy
0  48154ec7-1fe4-4896-ac66-89db54ddd12a  fd0bfe4f-7257-4ec3-8c6f-91fe8ae67d20  16-08-2023 00:21:46  2.0  1.0       NaN
1  8a43000a-03a4-4822-98f8-4df671c2d410  fd0bfe4f-7257-4ec3-8c6f-91fe8ae67d20  16-08-2023 00:24:21  NaN  NaN       1.0

tracker['accuracy'] # get accuracy column
tracker.to_df() # get pandas dataframe of current run

SQL-like

You can filter the data using SQL-like syntax using duckdb:

  • The sqlite database is attached as db and the table is events. Assts are in the assets table.

Python

tracker.conn.execute(f"SELECT * FROM db.events WHERE accuracy > 0.8").fetchall()

Duckdb CLI

duckdb
D ATTACH 'database.db' AS db (TYPE sqlite);
D SELECT * FROM db.events;
┌────────────────────────────┬──────────────────┬──────────┬───────┬──────────┬────────┐
│         timestamp               track_id       model    epoch  accuracy   loss  │
│          varchar                varchar       varchar   int64   double   double │
├────────────────────────────┼──────────────────┼──────────┼───────┼──────────┼────────┤
│ 2023-12-27 11:25:59.244003  fierce-pudu-1649  resnet18      1       0.9     0.1 │
└────────────────────────────┴──────────────────┴──────────┴───────┴──────────┴────────┘

Logger integration

This is very useful in an environment where you can use normal logs, and don't want to manage a separate logger or file.
On great use-case is model monitoring.

logs_stdout=true print to stdout every tracked event logs_path='logs' writes logs to a file

$ Tracker(db=Tracker.IN_MEMORY, logs_path='logs',logs_stdout=True).log({"accuracy":0.9})
2023-12-14 21:46:55.290 | TRACKING | xetrack.logging:log:69!📁!{"a": 1, "b": 2, "timestamp": "2023-12-14 21:46:55.290098", "track_id": "marvellous-stork-4885"}

$ Reader.read_logs(path='logs')
   accuracy                   timestamp                track_id
0       0.9  2023-12-14 21:47:48.375258  unnatural-polecat-1380

Analysis

To get the data of all runs in the database for analysis:
Use this for further analysis and plotting.

  • This works even while a another process is writing to the database.
from xetrack import Reader
df = Reader('database.db').to_df() 

Model Monitoring

Here is how we can save logs on any server and monitor them with xetrack:
We want to print logs to a file or stdout to be captured normally.
We save memory by not inserting the data to the database (even though it's fine). Later we can read the logs and do fancy visualisation, online/offline analysis, build dashboards etc.

tracker = Tracker(db=Tracker.SKIP_INSERT, logs_path='logs', logs_stdout=True)
tracker.logger.monitor("<dict or pandas DataFrame>") # -> write to logs in a structured way, consistent by schema, no database file needed


df = Reader.read_logs(path='logs')
"""
Run drift analysis and outlier detection on your logs: 
"""

ML tracking

tracker.logger.experiemnt(<model evaluation and params>) # -> prettily write to logs

df = Reader.read_logs(path='logs')
"""
Run fancy visualisation, online/offline analysis, build dashboards etc.
"""

CLI

For basic and repetative needs.

$ xt head database.db --n=2
|    | timestamp                  | track_id                 | model    |   accuracy | data   | params           |
|---:|:---------------------------|:-------------------------|:---------|-----------:|:-------|:-----------------|
|  0 | 2023-12-27 11:36:45.859668 | crouching-groundhog-5046 | xgboost  |        0.9 | mnist  | 1b5b2294fc521d12 |
|  1 | 2023-12-27 11:36:45.863888 | crouching-groundhog-5046 | xgboost  |        0.9 | mnist  | 1b5b2294fc521d12 |
...


$ xt tail database.db --n=1
|    | timestamp                  | track_id        | model    |   accuracy | data   | params           |
|---:|:---------------------------|:----------------|:---------|-----------:|:-------|:-----------------|
|  0 | 2023-12-27 11:37:30.627189 | ebony-loon-6720 | lightgbm |        0.9 | mnist  | 1b5b2294fc521d12 |

$ xet set accuracy 0.8 --where-key params --where-value 1b5b2294fc521d12 --track-id ebony-loon-6720

$ xt delete database.db ebony-loon-6720 # delete experiments wiht a given track_id

# run any other SQL in a oneliner
$ xt sql database.db "SELECT * FROM db.events;"

# retrive a model (any object) which was saved into a file using cloudpickle
$ xt assets export database.db hash output 

# remove an object from the assets
$ xt assets delete database.db hash 

# If you have two databases, and you want to merge one to the other
$ xt copy source.db target.db --assets/--no-assets

# Stats
$ xt describe database.db --columns=x,y,z

$ xt stats top/bottom database.db x # print the entry with the top/bottom result of a value

# bashplotlib (`pip install bashplotlib` is required)
$ xt plot hist database.db x
    ----------------------
    |    x histogram     |
    ----------------------

 225|      o
 200|     ooo
 175|     ooo
 150|     ooo
 125|     ooo
 100|    ooooo
  75|    ooooo
  50|    ooooo
  25|   ooooooo
   1| oooooooooo
     ----------

-----------------------------------
|             Summary             |
-----------------------------------
|        observations: 1000       |
|      min value: -56.605967      |
|         mean : 2.492545         |
|       max value: 75.185944      |
-----------------------------------
$ xt plot scatter database.db x y

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xetrack-0.3.1.tar.gz (23.8 kB view details)

Uploaded Source

Built Distribution

xetrack-0.3.1-py3-none-any.whl (23.9 kB view details)

Uploaded Python 3

File details

Details for the file xetrack-0.3.1.tar.gz.

File metadata

  • Download URL: xetrack-0.3.1.tar.gz
  • Upload date:
  • Size: 23.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.7 Darwin/23.3.0

File hashes

Hashes for xetrack-0.3.1.tar.gz
Algorithm Hash digest
SHA256 244091fa80d4fbdc8842adfa00dcd97986f25e74448adc3d89bd0b93593441c0
MD5 f52b687279b58949905fa5a14c4af369
BLAKE2b-256 e1f06d9a956db02fab553ea6a82732913f291baa805a829e75ffef9e7d2e07fb

See more details on using hashes here.

File details

Details for the file xetrack-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: xetrack-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 23.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.7 Darwin/23.3.0

File hashes

Hashes for xetrack-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e5c6fa43834e8948c51ddbea6bdf73a73195671c5150c302409d9b1d277e748e
MD5 4076fda01fb4aece869d9759e4735156
BLAKE2b-256 2ddb6b6b378fb9c00a67e172bc113c5e3e0ce5d3ff7e5d613f204a19f7724081

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page