XGP Python package with a scikit-learn interface
Project description
XGP Python package
This repository contains Python bindings to the XGP library. It is a simple wrapper that calls the XGP dynamic shared library and exposes a scikit-learn interface.
Documentation
Please refer to the Python section of the XGP website.
Installation
Installation instructions are available here.
Quick start
>>> from sklearn import datasets
>>> from sklearn import metrics
>>> from sklearn import model_selection
>>> import xgp
>>> X, y = datasets.load_boston(return_X_y=True)
>>> X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, random_state=42)
>>> model = xgp.XGPRegressor(
... flavor='boosting',
... loss_metric='mse',
... funcs='add,sub,mul,div',
... n_individuals=50,
... n_generations=20,
... parsimony_coefficient=0.01,
... n_rounds=8,
... random_state=42,
... )
>>> model = model.fit(X_train, y_train, eval_set=(X_test, y_test), verbose=True)
>>> metrics.mean_squared_error(y_train, model.predict(X_train)) # doctest: +ELLIPSIS
17.794685...
>>> metrics.mean_squared_error(y_test, model.predict(X_test)) # doctest: +ELLIPSIS
17.337693...
This will also produce the following output in the shell:
00:00:00 -- train mse: 42.06567 -- val mse: 33.80606 -- round 1
00:00:00 -- train mse: 24.20662 -- val mse: 22.73832 -- round 2
00:00:00 -- train mse: 22.06328 -- val mse: 18.90887 -- round 3
00:00:00 -- train mse: 20.25549 -- val mse: 18.45531 -- round 4
00:00:00 -- train mse: 18.86693 -- val mse: 18.22908 -- round 5
00:00:00 -- train mse: 17.79469 -- val mse: 17.33769 -- round 6
00:00:01 -- train mse: 17.62692 -- val mse: 22.67012 -- round 7
00:00:01 -- train mse: 17.24799 -- val mse: 22.77802 -- round 8
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
File details
Details for the file xgp-0.1.1-cp36-cp36m-manylinux1_x86_64.whl
.
File metadata
- Download URL: xgp-0.1.1-cp36-cp36m-manylinux1_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.5.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d268ddcda6b77a8157b1984e9655524c86c1829b08acfae758662fd6f569514 |
|
MD5 | 62e4d6e174e29a8043f5c5f314105d48 |
|
BLAKE2b-256 | 3d043f25d693d653cb87975f5f2ec91e1eb60d32ce3b146d21959bddb0c0318a |
File details
Details for the file xgp-0.1.1-cp35-cp35m-manylinux1_x86_64.whl
.
File metadata
- Download URL: xgp-0.1.1-cp35-cp35m-manylinux1_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.5m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.5.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd3aeae619df0fcfd129cade8c8a1dd98c7c9c192c3c9328ea687bd584dd8a44 |
|
MD5 | 812fdbf4d0582a096146042b4de62d38 |
|
BLAKE2b-256 | 03a2667f78cdf4780407170e4719d86fc48bbc3f58c3f189e670ca0ad650db58 |