Skip to main content

The Algorithm that find any relationship between data in equation form

Project description

Xgression

The Dynamic and Explainable Regression/Classification Solution

Author : Thaphon Chinnakornsakul

Xgression is the solution to find relationships between data to an equation by constructing computational tree that represent the steps of calculation from inputs to an output of algorithm then modify the tree with various operator to find the optimal solution. As the result Xgression can perform many forms of regression without setting initial equations or parameters

Keywords : Theoretical Computer Science, Artificial Intelligence and Machine Learning, Computational Mathematics, Regression, Optimization, Algorithm, Explainable Machine Learning, Computational Tree, Predictive Modelling, Classification

DOI: https://doi.org/10.21203/rs.3.rs-2390968/v1

Reference: [1] Nocedal, Jorge; Wright, Stephen J. (2006), Numerical Optimization (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-30303-1 [2] Python Software Foundation. Python Language Reference, version 3.11. Available at http://www.python.org [3] Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A. (2017) SymPy: symbolic computing in Python. PeerJ Computer Science 3:e103https://doi.org/10.7717/peerj-cs.103 [4] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.4 [5] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2. (Publisher link). [6] Visit This Predict Diabetes Kaggle for testing data

Note; The Code is still Unclear and unrefactored. i just wrote what i think

I will definitely refactor this after i pass the university interviewing!!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

Xgression-2.6.1-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file Xgression-2.6.1-py3-none-any.whl.

File metadata

  • Download URL: Xgression-2.6.1-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Xgression-2.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8ff490ad8873808f576956a8155b59467fc1cd5829ab0d1184ac94c44983d626
MD5 31d1218cf9b32cf6849383a099e14afc
BLAKE2b-256 224e37e2d07beca0ce96f79fb4692f53dde85e5138b8386f739f1fa8a5085af3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page