Skip to main content

A unified interface to run inference on machine learning libraries.

Project description

Python PyPI version Downloads License

Why x.infer?

If you'd like to run many models from different libraries without having to rewrite your inference code, x.infer is for you. It has a simple API and is easy to extend. Currently supports Transformers, Ultralytics, and TIMM.

Have a custom model? Create a class that implements the BaseModel interface and register it with x.infer. See Adding New Models for more details.

Key Features

x.infer
  • Unified Interface: Interact with different machine learning models through a single, consistent API.
  • Modular Design: Integrate and swap out models without altering the core framework.
  • Ease of Use: Simplifies model loading, input preprocessing, inference execution, and output postprocessing.
  • Extensibility: Add support for new models and libraries with minimal code changes.

Quickstart

Here's a quick example demonstrating how to use x.infer with a Transformers model:

Open In Colab Open In Kaggle

import xinfer

model = xinfer.create_model("vikhyatk/moondream2")

image = "https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg"
prompt = "Describe this image. "

model.infer(image, prompt)

>>> An animated character with long hair and a serious expression is eating a large burger at a table, with other characters in the background.

Get a list of models:

xinfer.list_models()
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Implementation ┃ Model ID                                        ┃ Input --> Output    ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ timm           │ eva02_large_patch14_448.mim_m38m_ft_in22k_in1k  │ image --> class     │
│ timm           │ eva02_large_patch14_448.mim_m38m_ft_in1k        │ image --> class     │
│ timm           │ eva02_large_patch14_448.mim_in22k_ft_in22k_in1k │ image --> class     │
│ timm           │ eva02_large_patch14_448.mim_in22k_ft_in1k       │ image --> class     │
│ timm           │ eva02_base_patch14_448.mim_in22k_ft_in22k_in1k  │ image --> class     │
│ timm           │ eva02_base_patch14_448.mim_in22k_ft_in1k        │ image --> class     │
│ timm           │ eva02_small_patch14_336.mim_in22k_ft_in1k       │ image --> class     │
│ timm           │ eva02_tiny_patch14_336.mim_in22k_ft_in1k        │ image --> class     │
│ transformers   │ Salesforce/blip2-opt-6.7b-coco                  │ image-text --> text │
│ transformers   │ Salesforce/blip2-flan-t5-xxl                    │ image-text --> text │
│ transformers   │ Salesforce/blip2-opt-6.7b                       │ image-text --> text │
│ transformers   │ Salesforce/blip2-opt-2.7b                       │ image-text --> text │
│ transformers   │ vikhyatk/moondream2                             │ image-text --> text │
│ ultralytics    │ yolov8x                                         │ image --> objects   │
│ ultralytics    │ yolov8m                                         │ image --> objects   │
│ ultralytics    │ yolov8l                                         │ image --> objects   │
│ ultralytics    │ yolov8s                                         │ image --> objects   │
│ ultralytics    │ yolov8n                                         │ image --> objects   │
│ ultralytics    │ yolov10x                                        │ image --> objects   │
│ ultralytics    │ yolov10m                                        │ image --> objects   │
│ ...            │ ...                                             │ ...                 │
│ ...            │ ...                                             │ ...                 │
└────────────────┴─────────────────────────────────────────────────┴─────────────────────┘

Installation

[!IMPORTANT] You must have PyTorch installed to use x.infer.

To install the barebones x.infer (without any optional dependencies), run:

pip install xinfer

x.infer can be used with multiple optional libraries. You'll just need to install one or more of the following:

pip install "xinfer[transformers]"
pip install "xinfer[ultralytics]"
pip install "xinfer[timm]"

To install all libraries, run:

pip install "xinfer[all]"

To install from a local directory, run:

git clone https://github.com/dnth/x.infer.git
cd x.infer
pip install -e .

Usage

Supported Models

Transformers:

  • BLIP2 Series
model = xinfer.create_model("Salesforce/blip2-opt-2.7b")
  • Moondream2
model = xinfer.create_model("vikhyatk/moondream2")

[!NOTE] Wish to load an unlisted model? You can load any Vision2Seq model from Transformers by using the Vision2SeqModel class.

from xinfer.transformers import Vision2SeqModel

model = Vision2SeqModel("facebook/chameleon-7b")
model = xinfer.create_model(model)

TIMM:

  • EVA02 Series
model = xinfer.create_model("eva02_small_patch14_336.mim_in22k_ft_in1k")

[!NOTE] Wish to load an unlisted model? You can load any model from TIMM by using the TIMMModel class.

from xinfer.timm import TimmModel

model = TimmModel("resnet18")
model = xinfer.create_model(model)

Ultralytics:

  • YOLOv8 Series
model = xinfer.create_model("yolov8n")
  • YOLOv10 Series
model = xinfer.create_model("yolov10x")
  • YOLOv11 Series
model = xinfer.create_model("yolov11s")

[!NOTE] Wish to load an unlisted model? You can load any model from Ultralytics by using the UltralyticsModel class.

from xinfer.ultralytics import UltralyticsModel

model = UltralyticsModel("yolov5n6u")
model = xinfer.create_model(model)

Adding New Models

  • Step 1: Create a new model class that implements the BaseModel interface.

  • Step 2: Implement the required abstract methods load_model, infer, and infer_batch.

  • Step 3: Decorate your class with the register_model decorator, specifying the model ID, implementation, and input/output.

For example:

@xinfer.register_model("my-model", "custom", ModelInputOutput.IMAGE_TEXT_TO_TEXT)
class MyModel(BaseModel):
    def load_model(self):
        # Load your model here
        pass

    def infer(self, image, prompt):
        # Run single inference 
        pass

    def infer_batch(self, images, prompts):
        # Run batch inference here
        pass

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xinfer-0.0.6.tar.gz (30.7 MB view details)

Uploaded Source

Built Distribution

xinfer-0.0.6-py2.py3-none-any.whl (32.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file xinfer-0.0.6.tar.gz.

File metadata

  • Download URL: xinfer-0.0.6.tar.gz
  • Upload date:
  • Size: 30.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xinfer-0.0.6.tar.gz
Algorithm Hash digest
SHA256 e5bf14dbc7b00681e3684103b905819d90ca45ca8a2f37cfe724c33a83ed2710
MD5 8721b3cf9bb06334daba8dae70d4fbf7
BLAKE2b-256 b8665f5717c837cfbc180a07ef55e0cc145e091b8dc5b6e78b821f1f78fe3d59

See more details on using hashes here.

File details

Details for the file xinfer-0.0.6-py2.py3-none-any.whl.

File metadata

  • Download URL: xinfer-0.0.6-py2.py3-none-any.whl
  • Upload date:
  • Size: 32.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xinfer-0.0.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a82471c5e7c87a24ce0bc481f984b57a14ebd08dbc335d30eb4ed97a61d800a3
MD5 af0679e77f23bde9e1f2cc4dc093d31d
BLAKE2b-256 e14641f2c00315cf47e09646f1ebf11637ad5898532192991b8b6a1464bbf064

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page