Skip to main content

A unified interface to run inference on machine learning libraries.

Project description

Python PyPI version Downloads License

🤔 Why x.infer?

If you'd like to run many models from different libraries without having to rewrite your inference code, x.infer is for you. It has a simple API and is easy to extend. Currently supports Transformers, Ultralytics, and TIMM.

Run any supported model using the following 4 lines of code:

import xinfer

model = xinfer.create_model("vikhyatk/moondream2")
model.infer(image, prompt)         # Run single inference
model.infer_batch(images, prompts) # Run batch inference
model.launch_gradio()              # Launch Gradio interface

Have a custom model? Create a class that implements the BaseModel interface and register it with x.infer. See Adding New Models for more details.

🌟 Key Features

x.infer
  • Unified Interface: Interact with different machine learning models through a single, consistent API.
  • Modular Design: Integrate and swap out models without altering the core framework.
  • Ease of Use: Simplifies model loading, input preprocessing, inference execution, and output postprocessing.
  • Extensibility: Add support for new models and libraries with minimal code changes.

🚀 Quickstart

Here's a quick example demonstrating how to use x.infer with a Transformers model:

Open In Colab Open In Kaggle

import xinfer

model = xinfer.create_model("vikhyatk/moondream2")

image = "https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg"
prompt = "Describe this image. "

model.infer(image, prompt)

>>> An animated character with long hair and a serious expression is eating a large burger at a table, with other characters in the background.

Get a list of models:

xinfer.list_models()
       Available Models                                      
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃ Implementation ┃ Model ID                                        ┃ Input --> Output     ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩
│ timm           │ eva02_large_patch14_448.mim_m38m_ft_in22k_in1k  │ image --> categories │
│ timm           │ eva02_large_patch14_448.mim_m38m_ft_in1k        │ image --> categories │
│ timm           │ eva02_large_patch14_448.mim_in22k_ft_in22k_in1k │ image --> categories │
│ timm           │ eva02_large_patch14_448.mim_in22k_ft_in1k       │ image --> categories │
│ timm           │ eva02_base_patch14_448.mim_in22k_ft_in22k_in1k  │ image --> categories │
│ timm           │ eva02_base_patch14_448.mim_in22k_ft_in1k        │ image --> categories │
│ timm           │ eva02_small_patch14_336.mim_in22k_ft_in1k       │ image --> categories │
│ timm           │ eva02_tiny_patch14_336.mim_in22k_ft_in1k        │ image --> categories │
│ transformers   │ Salesforce/blip2-opt-6.7b-coco                  │ image-text --> text  │
│ transformers   │ Salesforce/blip2-flan-t5-xxl                    │ image-text --> text  │
│ transformers   │ Salesforce/blip2-opt-6.7b                       │ image-text --> text  │
│ transformers   │ Salesforce/blip2-opt-2.7b                       │ image-text --> text  │
│ transformers   │ fancyfeast/llama-joycaption-alpha-two-hf-llava  │ image-text --> text  │
│ transformers   │ vikhyatk/moondream2                             │ image-text --> text  │
│ transformers   │ sashakunitsyn/vlrm-blip2-opt-2.7b               │ image-text --> text  │
│ ultralytics    │ yolov8x                                         │ image --> boxes      │
│ ultralytics    │ yolov8m                                         │ image --> boxes      │
│ ultralytics    │ yolov8l                                         │ image --> boxes      │
│ ultralytics    │ yolov8s                                         │ image --> boxes      │
│ ultralytics    │ yolov8n                                         │ image --> boxes      │
│ ...            │ ...                                             │ ...                  │
│ ...            │ ...                                             │ ...                  │
└────────────────┴─────────────────────────────────────────────────┴──────────────────────┘

🖥️ Launch Gradio Interface

model.launch_gradio()

Gradio Interface

📦 Installation

[!IMPORTANT] You must have PyTorch installed to use x.infer.

To install the barebones x.infer (without any optional dependencies), run:

pip install xinfer

x.infer can be used with multiple optional libraries. You'll just need to install one or more of the following:

pip install "xinfer[transformers]"
pip install "xinfer[ultralytics]"
pip install "xinfer[timm]"

To install all libraries, run:

pip install "xinfer[all]"

To install from a local directory, run:

git clone https://github.com/dnth/x.infer.git
cd x.infer
pip install -e .

🛠️ Usage

Supported Models

Transformers:

Model Usage
BLIP2 Series xinfer.create_model("Salesforce/blip2-opt-2.7b")
Moondream2 xinfer.create_model("vikhyatk/moondream2")
VLRM-BLIP2 xinfer.create_model("sashakunitsyn/vlrm-blip2-opt-2.7b")
JoyCaption xinfer.create_model("fancyfeast/llama-joycaption-alpha-two-hf-llava")

[!NOTE] Wish to load an unsupported model? You can load any Vision2Seq model from Transformers by using the Vision2SeqModel class.

from xinfer.transformers import Vision2SeqModel

model = Vision2SeqModel("facebook/chameleon-7b")
model = xinfer.create_model(model)

TIMM: All models from TIMM fine-tuned for ImageNet 1k are supported.

[!NOTE] Wish to load an unsupported model? You can load any model from TIMM by using the TIMMModel class.

from xinfer.timm import TimmModel

model = TimmModel("resnet18")
model = xinfer.create_model(model)

Ultralytics:

Model Usage
YOLOv8 Series xinfer.create_model("yolov8n")
YOLOv10 Series xinfer.create_model("yolov10x")
YOLOv11 Series xinfer.create_model("yolov11s")

[!NOTE] Wish to load an unsupported model? You can load any model from Ultralytics by using the UltralyticsModel class.

from xinfer.ultralytics import UltralyticsModel

model = UltralyticsModel("yolov5n6u")
model = xinfer.create_model(model)

🔧 Adding New Models

  • Step 1: Create a new model class that implements the BaseModel interface.

  • Step 2: Implement the required abstract methods load_model, infer, and infer_batch.

  • Step 3: Decorate your class with the register_model decorator, specifying the model ID, implementation, and input/output.

For example:

@xinfer.register_model("my-model", "custom", ModelInputOutput.IMAGE_TEXT_TO_TEXT)
class MyModel(BaseModel):
    def load_model(self):
        # Load your model here
        pass

    def infer(self, image, prompt):
        # Run single inference 
        pass

    def infer_batch(self, images, prompts):
        # Run batch inference here
        pass

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xinfer-0.0.8.tar.gz (32.4 MB view details)

Uploaded Source

Built Distribution

xinfer-0.0.8-py2.py3-none-any.whl (35.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file xinfer-0.0.8.tar.gz.

File metadata

  • Download URL: xinfer-0.0.8.tar.gz
  • Upload date:
  • Size: 32.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xinfer-0.0.8.tar.gz
Algorithm Hash digest
SHA256 97e7b13c282195208b944f438f17af6c3538082345915191f780344212c8caf7
MD5 0fd90a547a78913d5e095631939c7306
BLAKE2b-256 4c472715eef8191370b8b2e23c15747ad16c038b0c0ff66c017e44d7cccaa73a

See more details on using hashes here.

File details

Details for the file xinfer-0.0.8-py2.py3-none-any.whl.

File metadata

  • Download URL: xinfer-0.0.8-py2.py3-none-any.whl
  • Upload date:
  • Size: 35.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xinfer-0.0.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cf436ac74867ae814ccfc50da0b9f7d0ad7c25e0e1bc88211a350af7a855a90d
MD5 ec00e4831258efec802716cd30b2a220
BLAKE2b-256 6ef5b446f84d54dd336a7ef4d5e2992cdc3dc2b076abae8da7fab4acc5ca0ffe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page