Skip to main content

XMOS AI Tools

Project description

Documentation

Click here for documentation on using xmos-ai-tools to deploy AI models on xcore.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

xmos_ai_tools-1.3.1-py3-none-win_amd64.whl (32.7 MB view details)

Uploaded Python 3 Windows x86-64

xmos_ai_tools-1.3.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (60.4 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

xmos_ai_tools-1.3.1-py3-none-macosx_11_0_arm64.whl (36.8 MB view details)

Uploaded Python 3 macOS 11.0+ ARM64

xmos_ai_tools-1.3.1-py3-none-macosx_10_14_x86_64.whl (35.8 MB view details)

Uploaded Python 3 macOS 10.14+ x86-64

File details

Details for the file xmos_ai_tools-1.3.1-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for xmos_ai_tools-1.3.1-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 fc2860be2689b7f96c7ba4cb2b386bc0bb3d69a95d0d242005b86909c83b6198
MD5 e2b3c10c6777609bbdc820f38182c0a1
BLAKE2b-256 2c6fb0aa1670b0e99932c1e17079f5cc0cb987cd8f264a21fb4e00e464a9b102

See more details on using hashes here.

File details

Details for the file xmos_ai_tools-1.3.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xmos_ai_tools-1.3.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69cc0cf116ee9524352e9be9c694ecac62b42e441f2016056a461800ec04cd01
MD5 543edc0d5f45c9b40b61b231330717ce
BLAKE2b-256 d3529eaadace2393958aa69b8587c684fde9225a38e8de57f65be931c9b1ff48

See more details on using hashes here.

File details

Details for the file xmos_ai_tools-1.3.1-py3-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xmos_ai_tools-1.3.1-py3-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f10f868aa57aa1721fdc3d220628c89a0d16b7344b73d111fee5937dc5ca471c
MD5 22134a7eca744e0f4ec087d6cdd4e113
BLAKE2b-256 d6e6255b16e18122f7155c097a5ff7d701ef963ad12fa1d56a85d782f73c8b09

See more details on using hashes here.

File details

Details for the file xmos_ai_tools-1.3.1-py3-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for xmos_ai_tools-1.3.1-py3-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ca5c1ced1fc34b6dc6dd83bd5bd3379e375f076910e8e8ea4b18ae7c4ec0cdc9
MD5 b1da57904432fca4200a2b3b9b9c06d5
BLAKE2b-256 11d6e75ef3b5386c751d13276a32808ea46d23415c8e31b897eba01e8f0cfbf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page