Skip to main content

This is a public fork of Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification. Free for anyone to use, for non-commercial purposes.

Project description

This is a personal fork of Ultralytics because I want to be able to make modifications and pip install it.

English | 简体中文

Ultralytics CI YOLOv8 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle

Ultralytics YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.

We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 Docs for details, raise an issue on GitHub for support, and join our Discord community for questions and discussions!

To request an Enterprise License please complete the form at Ultralytics Licensing.

Documentation

See below for a quickstart installation and usage example, and see the YOLOv8 Docs for full documentation on training, validation, prediction and deployment.

Install

Pip install the ultralytics package including all requirements in a Python>=3.7 environment with PyTorch>=1.7.

pip install ultralytics
Usage

CLI

YOLOv8 may be used directly in the Command Line Interface (CLI) with a yolo command:

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

yolo can be used for a variety of tasks and modes and accepts additional arguments, i.e. imgsz=640. See the YOLOv8 CLI Docs for examples.

Python

YOLOv8 may also be used directly in a Python environment, and accepts the same arguments as in the CLI example above:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from scratch
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

# Use the model
model.train(data="coco128.yaml", epochs=3)  # train the model
metrics = model.val()  # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
path = model.export(format="onnx")  # export the model to ONNX format

Models download automatically from the latest Ultralytics release. See YOLOv8 Python Docs for more examples.

Models

YOLOv8 Detect, Segment and Pose models pretrained on the COCO dataset are available here, as well as YOLOv8 Classify models pretrained on the ImageNet dataset. Track mode is available for all Detect, Segment and Pose models.

All Models download automatically from the latest Ultralytics release on first use.

Detection

See Detection Docs for usage examples with these models.

Model size
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by yolo val detect data=coco.yaml device=0
  • Speed averaged over COCO val images using an Amazon EC2 P4d instance.
    Reproduce by yolo val detect data=coco128.yaml batch=1 device=0|cpu
Segmentation

See Segmentation Docs for usage examples with these models.

Model size
(pixels)
mAPbox
50-95
mAPmask
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-seg 640 36.7 30.5 96.1 1.21 3.4 12.6
YOLOv8s-seg 640 44.6 36.8 155.7 1.47 11.8 42.6
YOLOv8m-seg 640 49.9 40.8 317.0 2.18 27.3 110.2
YOLOv8l-seg 640 52.3 42.6 572.4 2.79 46.0 220.5
YOLOv8x-seg 640 53.4 43.4 712.1 4.02 71.8 344.1
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by yolo val segment data=coco.yaml device=0
  • Speed averaged over COCO val images using an Amazon EC2 P4d instance.
    Reproduce by yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu
Classification

See Classification Docs for usage examples with these models.

Model size
(pixels)
acc
top1
acc
top5
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B) at 640
YOLOv8n-cls 224 66.6 87.0 12.9 0.31 2.7 4.3
YOLOv8s-cls 224 72.3 91.1 23.4 0.35 6.4 13.5
YOLOv8m-cls 224 76.4 93.2 85.4 0.62 17.0 42.7
YOLOv8l-cls 224 78.0 94.1 163.0 0.87 37.5 99.7
YOLOv8x-cls 224 78.4 94.3 232.0 1.01 57.4 154.8
  • acc values are model accuracies on the ImageNet dataset validation set.
    Reproduce by yolo val classify data=path/to/ImageNet device=0
  • Speed averaged over ImageNet val images using an Amazon EC2 P4d instance.
    Reproduce by yolo val classify data=path/to/ImageNet batch=1 device=0|cpu
Pose

See Pose Docs for usage examples with these models.

Model size
(pixels)
mAPpose
50-95
mAPpose
50
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-pose 640 50.4 80.1 131.8 1.18 3.3 9.2
YOLOv8s-pose 640 60.0 86.2 233.2 1.42 11.6 30.2
YOLOv8m-pose 640 65.0 88.8 456.3 2.00 26.4 81.0
YOLOv8l-pose 640 67.6 90.0 784.5 2.59 44.4 168.6
YOLOv8x-pose 640 69.2 90.2 1607.1 3.73 69.4 263.2
YOLOv8x-pose-p6 1280 71.6 91.2 4088.7 10.04 99.1 1066.4
  • mAPval values are for single-model single-scale on COCO Keypoints val2017 dataset.
    Reproduce by yolo val pose data=coco-pose.yaml device=0
  • Speed averaged over COCO val images using an Amazon EC2 P4d instance.
    Reproduce by yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu

Integrations




Roboflow ClearML ⭐ NEW Comet ⭐ NEW Neural Magic ⭐ NEW
Label and export your custom datasets directly to YOLOv8 for training with Roboflow Automatically track, visualize and even remotely train YOLOv8 using ClearML (open-source!) Free forever, Comet lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions Run YOLOv8 inference up to 6x faster with Neural Magic DeepSparse

Ultralytics HUB

Experience seamless AI with Ultralytics HUB ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly Ultralytics App. Start your journey for Free now!

Contribute

We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our Contributing Guide to get started, and fill out our Survey to send us feedback on your experience. Thank you 🙏 to all our contributors!

License

YOLOv8 is available under two different licenses:

  • AGPL-3.0 License: See LICENSE file for details.
  • Enterprise License: Provides greater flexibility for commercial product development without the open-source requirements of AGPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at Ultralytics Licensing.

Contact

For YOLOv8 bug reports and feature requests please visit GitHub Issues, and join our Discord community for questions and discussions!


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xn-ultralytics-1.0.2.tar.gz (539.9 kB view details)

Uploaded Source

Built Distribution

xn_ultralytics-1.0.2-py3-none-any.whl (612.2 kB view details)

Uploaded Python 3

File details

Details for the file xn-ultralytics-1.0.2.tar.gz.

File metadata

  • Download URL: xn-ultralytics-1.0.2.tar.gz
  • Upload date:
  • Size: 539.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for xn-ultralytics-1.0.2.tar.gz
Algorithm Hash digest
SHA256 6b28d9d6a35b4f152dadb01a13cda8f9746d2325b5297d21d9e39c189bd76306
MD5 36850a8fb233736b29bc0d3235516d1d
BLAKE2b-256 f83faff30c2fe4cb34d7ba037be0aa99214ea6cee3f84391b52160df2a1f667b

See more details on using hashes here.

File details

Details for the file xn_ultralytics-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for xn_ultralytics-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 883da15d13f3ef11de552eaa52ee2ee8634601a06e8f669f156bda3818f34765
MD5 7969ef7d7c0d05099f42e441cf648455
BLAKE2b-256 88a61b32e20b4a3359825f447ce837e15f8d007944212626a97579b92686c9b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page