This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

A Python CLI game and library for Tic-tac-toe.

The library is written in a modular way. Its overall design consists of 4 decoupled components:

  1. A Tic-tac-toe board data structure, xo.board.
  2. An arbiter for analyzing the state of a board, xo.arbiter.
  3. A game engine to implement and enforce the Tic-tac-toe game logic, xo.game.
  4. And finally, an AI for finding excellent moves, xo.ai.

The board

>>> from xo.board import isempty, Board

>>> board = Board.fromstring('..x.o')
>>> print(board)
..x.o....

>>> print(board.toascii())
   |   | x
---+---+---
   | o |
---+---+---
   |   |

>>> board[1, 3]
x
>>> board[3, 3] = 'x'
>>> print(board)
..x.o...x

>>> for r, c, piece in board:
...   if isempty(piece):
...     print('{}, {}'.format(r, c))
...
1, 1
1, 2
2, 1
2, 3
3, 1
3, 2

The board isn’t concerned with whether or not a given layout can be reached in an actual Tic-tac-toe game. Hence, the following is perfectly legal:

>>> board = Board.fromstring('xxxxxxxxo')
>>> print(board)
xxxxxxxxo

The arbiter is concerned about that though and can detect such invalid board layouts.

The arbiter

>>> from xo import arbiter
>>> from xo.board import Board

>>> arbiter.outcome(Board.fromstring(), 'x')
{
  'piece_counts': {'os': 0, 'xs': 0, 'es': 9},
  'status': 'in-progress'
}

>>> arbiter.outcome(Board.fromstring('xxxoo'), 'o')
{
  'piece_counts': {'os': 2, 'xs': 3, 'es': 4},
  'details': [
    {'index': 1, 'positions': [(1, 1), (1, 2), (1, 3)], 'where': 'row'}
  ],
  'status': 'gameover',
  'reason': 'loser'
}

>>> arbiter.outcome(Board.fromstring('xxxxxxxxo'), 'x')
{
  'piece_counts': {'os': 1, 'xs': 8, 'es': 0},
  'status': 'invalid',
  'reason': 'too-many-moves-ahead'
}

The game engine

Enforcer of the game rules.

>>> from xo.game import Game

>>> game = Game()
>>> game.start('x')
>>> game.moveto(1, 1)
{
  'name': 'next-turn',
  'last_move': {'token': 'x', 'r': 1, 'c': 1}
}
>>> game.moveto(1, 1)
{
  'name': 'invalid-move',
  'reason': 'occupied'
}
>>> game.moveto(0, 0)
{
  'name': 'invalid-move',
  'reason': 'out-of-bounds'
}
>>> game.moveto(2, 2)
{
  'name': 'next-turn',
  'last_move': {'token': 'o', 'r': 2, 'c': 2}
}
>>> game.moveto(3, 1)
{
  'name': 'next-turn',
  'last_move': {'token': 'x', 'r': 3, 'c': 1}
}
>>> print(game.board.toascii())
 x |   |
---+---+---
   | o |
---+---+---
 x |   |

>>> game.moveto(3, 3)
{
  'name': 'next-turn',
  'last_move': {'token': 'o', 'r': 3, 'c': 3}
}
>>> game.moveto(2, 1)
{
  'name': 'gameover',
  'reason': 'winner',
  'last_move': {'token': 'x', 'r': 2, 'c': 1},
  'details': [{'index': 1, 'positions': [(1, 1), (2, 1), (3, 1)], 'where': 'column'}]
}

>>> game.moveto(1, 3)
...
xo.error.IllegalStateError: gameover

>>> # start a new game
>>> game.restart()
>>> # since x won, it would be x's turn to play
>>> # if the game was squashed then it would have been o's turn to play
>>> game.moveto(1, 1)
>>> print(game.board.toascii())
 x |   |
---+---+---
   |   |
---+---+---
   |   |

The AI

No Tic-tac-toe library is complete without an AI that can play a perfect game of Tic-tac-toe.

>>> from xo import ai
>>> from xo.board import Board

>>> ai.evaluate(Board.fromstring('xo.xo.'), 'x')
MinimaxResult(score=26, depth=1, positions=[(3, 1)])

>>> ai.evaluate(Board.fromstring('xo.xo.'), 'o')
MinimaxResult(score=26, depth=1, positions=[(3, 2)])

>>> ai.evaluate(Board.fromstring('x.o'), 'x')
MinimaxResult(score=18, depth=5, positions=[(2, 1), (3, 1), (3, 3)])

Finally, xo.cli brings it all together in its implementation of the command-line Tic-tac-toe game. It’s interesting to see how easy it becomes to implement the game so be sure to check it out.

Note: An extensive suite of tests is also available that can help you better understand how each component is supposed to work.

Installation

Install it using:

$ pip install xo

You would now have access to an executable called xo. Type

$ xo

to starting playing immediately.

Usage

For help, type

$ xo -h

By default xo is configured for a human player to play with x and a computer player to play with o. However, this can be easily changed to allow any of the other 3 possibilities:

$ # Computer vs Human
$ xo -x computer -o human

$ # Human vs Human
$ xo -x human -o human
$ xo -o human # since x defaults to human

$ # Computer vs Computer
$ xo -x computer -o computer
$ xo -x computer # since o defaults to computer

You can also change who plays first. By default it’s the x player.

$ # Let o play first
$ xo -f o

Finally, when letting the computers battle it out you can specify the number of times you want them to play each other. By default they play 50 rounds.

$ xo -x computer -r 5
.....

Game statistics
---------------
Total games played: 5 (2.438 secs)
Number of times x won: 0
Number of times o won: 0
Number of squashed games: 5

Development

Get the source code.

$ git clone git@github.com:dwayne/xo-python.git

Create a virtual environment and activate it.

$ cd xo-python
$ pyvenv venv
$ . venv/bin/activate

Then, upgrade pip and setuptools and install the development dependencies.

(venv) $ pip install -U pip setuptools
(venv) $ pip install -r requirements-dev.txt

You’re now all set to begin development.

Testing

Tests are written using the unittest unit testing framework.

Run all tests.

(venv) $ python -m unittest

Run a specific test module.

(venv) $ python -m unittest tests.test_arbiter

Run a specific test case.

(venv) $ python -m unittest tests.test_arbiter.GameoverPositionsTestCase

Run a specific test method.

(venv) $ python -m unittest tests.test_arbiter.GameoverPositionsTestCase.test_when_x_wins

Credits

Thanks to Patrick Henry Winston for clarifying the Minimax algorithm. His video on the topic was a joy to watch.

Change Log

1.0.0 (2016-09-09)

Added

  • A board data structure
  • An arbiter
  • A game engine
  • An AI based on the Minimax algorithm
  • A CLI

0.0.1 (2016-09-05)

Birth!

Release History

Release History

1.0.0

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
xo-1.0.0-py3-none-any.whl (15.1 kB) Copy SHA256 Checksum SHA256 py3 Wheel Sep 9, 2016
xo-1.0.0.tar.gz (13.6 kB) Copy SHA256 Checksum SHA256 Source Sep 9, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting