Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison , explanation and research paper.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Github Issues Reporting bugs and filing feature requests.
StackOverflow Asking questions about how to use Xorbits.
Slack Collaborating with other Xorbits users.

Citing Xorbits

If Xorbits could help you, please cite our paper using the following metadata:

@inproceedings{lu2024Xorbits,
  title = {Xorbits: Automating Operator Tiling for Distributed Data Science},
  shorttitle = {Xorbits},
  booktitle = {2024 {{IEEE}} 40th {{International Conference}} on {{Data Engineering}} ({{ICDE}})},
  author = {Lu, Weizheng and He, Kaisheng and Qin, Xuye and Li, Chengjie and Wang, Zhong and Yuan, Tao and Liao, Xia and Zhang, Feng and Chen, Yueguo and Du, Xiaoyong},
  year = {2024},
  month = may,
  pages = {5211--5223},
  issn = {2375-026X},
  doi = {10.1109/ICDE60146.2024.00392},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.8.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.8.0-cp312-cp312-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

xorbits-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

xorbits-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

xorbits-0.8.0-cp312-cp312-macosx_11_0_arm64.whl (3.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

xorbits-0.8.0-cp312-cp312-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

xorbits-0.8.0-cp312-cp312-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.8.0-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.8.0-cp311-cp311-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

xorbits-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.8.0-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.8.0-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.8.0-cp310-cp310-macosx_11_0_arm64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

xorbits-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.8.0-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.8.0-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.8.0-cp39-cp39-macosx_11_0_arm64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

xorbits-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.8.0-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.8.0.tar.gz.

File metadata

  • Download URL: xorbits-0.8.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xorbits-0.8.0.tar.gz
Algorithm Hash digest
SHA256 778c65e057de8b4ffe5a2f13855657dbb6c5ac8c07314ed0486cb0c46820f5ef
MD5 c4fb58718db6d7b03a7d2ba281166d94
BLAKE2b-256 540282e13d64ad30837b7871346d6e6a58452ba613ef64e81f7bb11abd9fb439

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.8.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xorbits-0.8.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 356cf9dbab8d448001f9c421dabb00d82fc77b8e3b95b7fbb929a23f854ebeaf
MD5 f66697534b6e5e4058bbcf617dab74c6
BLAKE2b-256 260a15d896b60ed135ea4898bd94f586191c82f53d3aba020950d5bc7ef54fd6

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20db3dc1cca063100957c598a00507de5e526b2b7820d3e8f014f95340ed0d44
MD5 a92476885f70832e2853173ee95a6b37
BLAKE2b-256 1db9fbbe7ab41d4b19fe642480ba8ec157e827221b2c2150b405d81534ffd067

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c91e819f632b5fd389b4802fa33db7b6b37dd8979c028d16f8bc9af5130a39db
MD5 c45906ef53b507e58f05249806ceef05
BLAKE2b-256 5207dcb730522500afb1f7ea1bce33cf88bb8f306ae50dc1f1a11ad188a0de52

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64355b334c022963893db5616cef908f96f0f0fc722b6223207bddfa561ef657
MD5 48c2281a6b44875f0de20affeb3f279c
BLAKE2b-256 9a3a19d01289b22d59542043bb8082675c7c540af310fbe3cfd41ae19cd7aba5

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28af8ca13039f911d012aec4aa5ff5b9d760008d80f1f1337561f8457306494e
MD5 8ef838f941f9cf52a18f115687cdd2f6
BLAKE2b-256 8bdfbf4aa42d6620884df09c69845ba957ae5d2b109471a32ebe239b1c1c40db

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 55f600c3cbaca2dd4f098619b61e6578633c8b81c97b42a1f9732588982381c5
MD5 1b1a5730d9214c5ad428138da91733c8
BLAKE2b-256 af5e7ff73c91071eea12c58a58eb59e7da347faec59209f095977daa2c20b932

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.8.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xorbits-0.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5f1099f375441ace8ca6ffe0ce7ce42c36caf22322fc2db8d1c9dafbaae61453
MD5 dc4ae3d358d66afbe767cd130bf61d12
BLAKE2b-256 3998ce2318769017e83d7907fa110d5ba1d13952dd8febfe07a87559d4d5f02a

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92b0b5d1b7137bdc166d35bd7bbd1a2e93719657184943bcb3469b4eafc7d6ab
MD5 92c71083f9851e9a787428db56fb48e6
BLAKE2b-256 90b09fb172e0eedeafb0c1b6640eefc141024be627ef0d25adfcd5963eb99bea

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a373e1e2de2dec2c5aaf725a50c8fb078ba1bd671fb19bf5a1c42690e5163f66
MD5 23e7720eb266484612912b402bbd5bcb
BLAKE2b-256 8e49eb6ca50b24b541be39d50a39342e758cf3256f91d017bc7b6b6c7a32a880

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16ef5a0f84537e66cf49a1df7a705ac8f986aaddfdeea6b8b4651478a2560f6e
MD5 718a199cabfa20a52c23e042fb54a00e
BLAKE2b-256 a089bb02aa154915381df76fa6c64979bebe8e8a64000af4dbd67f3d2f26f35e

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14780f9ce93dd4db4a87c6734dd9e912699d5856e0ff7834ff5b65aea617bc6f
MD5 2ab750282957ace7d0a362e06bc7ba8d
BLAKE2b-256 311151845d5f462680efde24a23d4f06a731da410451a221e726e160aa9b034e

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f706e5a01b41a8ed9e1dd75e22ce53c735b779d133d118d3b26132c6605481de
MD5 731c749199098315203ea02474bce8d8
BLAKE2b-256 310def2c25edff8f0acd50c62ca0cdac3fcad1471b7f7e9b07af8bdae1c41e2a

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xorbits-0.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad7098fddf5612b39e47f8afaa1a54c33a8ce2e59ffb0aac5eeac7bed800c3d0
MD5 4bb070a0b7482af8928dd69802c98329
BLAKE2b-256 b294acbc1665a420152e11cc32abc26e5257f86703b7cfcbf7cf1fd68b9c981e

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28494fcee5d0e22c15ab0615f3523dfff6590e686f0da56eb289149bb11e215a
MD5 5afd32c71776097647e9d1b0b339bcf7
BLAKE2b-256 fcf7806247091ce39f15265fe7d2d9bf65e0a2897e21055640c34fc3947aed0a

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a20b292b9b0f8e1a2b7a97a4f9f3b1cca59e82d39bc4572ed74133480e5f93b8
MD5 a3a974e0c87b69d676b72ef013f8dd81
BLAKE2b-256 0a48f8b159bc56311e4089ab61f97c4df74ae86694e5c9b2b9b29e7f2df8a7fe

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1fb0ee9a46db2e7a7c98597d27552c4f9ed80a44ccd735b538d72776ab12c252
MD5 de2cd19b94eaef925c34c00e937ae3d2
BLAKE2b-256 dbf2f19e25d36da1d2daa87fc354c71688877fa6664e836b08faf9697f9393d7

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4331eca87fa950722a1f03fe305271b5579d35c6afeba3626714e86e4fa64f0
MD5 92b3fc62806fb231097b9e4a56e88b84
BLAKE2b-256 ca320c026b8d4d70d92dc05d218b322fa2802cc355946d3a015f92583fcbdbe5

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6f5a1214648f5fc53a23522cfd6f954591224351e0eb20e8ac6065008415dda2
MD5 ef52079517195b11f09e738f4a584f60
BLAKE2b-256 ab12d144c3190ff884ee79272d3eeaaaef431d692f7834aea6fc1007e5292ec1

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xorbits-0.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cbcb981607bff73481c3568f1250c642f8da0d6c0f5dab94ad795db73b8bd497
MD5 c0acc2d151fbc5c3ae00cd0c2ebd592a
BLAKE2b-256 ef5c4b667270b315e483ee23df9db23378cc0c6ad24b07b50470a159f3cf94cc

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6da0de7e6e530b149fef6e898d61d7ce423df919cc0d50070f91eca53fc7bf51
MD5 e160df413451e9e5c9539736abb13fa8
BLAKE2b-256 62941c609676f7a626e0713a187ee61999129f3c085b933f117b8ed6385e9bb5

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2e9020d93e4e0c74dd338383449ef38e031aa5a5a0f151784cbfb0d76e7e79c5
MD5 bf219fc803c20a79730872fe0cf7d961
BLAKE2b-256 b8b827f388730de4b657f0592a724ab1cda1dc0c3ad4527f70a46e84f17eecbc

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 abd243e769d83929c2a625f04480212399785b824ca36a56225edc92b8400bd0
MD5 05920790cf8a02607cebbbe0a1c008f4
BLAKE2b-256 86591dfbb3cca8553ae09029138e6eafd39b2c3db58cf13e6b7bf293b9f946a8

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 72b9eabcd3b5710d39adca9a09956b04ed16b17c7b51cf9381b2faa410321c5b
MD5 25ffc8d65b74d08b1c0766fd9274fef0
BLAKE2b-256 8b5b1e262aad2225fc36d9ede044724fa3cdc80dca1ebb2f989ebf8b46b2bbe7

See more details on using hashes here.

File details

Details for the file xorbits-0.8.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.8.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6591f102432630eb59ffef23541e86ac54df617939ce82a751b08477a6742d8f
MD5 66bcc448032a0b706d7fa76caeb3628c
BLAKE2b-256 19bf1f4b76b4189c47d3766b6c5e2fa2e1a43472bb5c30cb24b57af098e8ac0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page