Skip to main content

xpk helps Cloud developers to orchestrate training jobs on accelerators on GKE.

Project description

Overview

xpk (Accelerated Processing Kit, pronounced x-p-k,) is a software tool to help Cloud developers to orchestrate training jobs on accelerators such as TPUs and GPUs on GKE. xpk handles the "multihost pods" of TPUs, GPUs (HGX H100) and CPUs (n2-standard-32) as first class citizens.

xpk decouples provisioning capacity from running jobs. There are two structures: clusters (provisioned VMs) and workloads (training jobs). Clusters represent the physical resources you have available. Workloads represent training jobs -- at any time some of these will be completed, others will be running and some will be queued, waiting for cluster resources to become available.

The ideal workflow starts by provisioning the clusters for all of the ML hardware you have reserved. Then, without re-provisioning, submit jobs as needed. By eliminating the need for re-provisioning between jobs, using Docker containers with pre-installed dependencies and cross-ahead of time compilation, these queued jobs run with minimal start times. Further, because workloads return the hardware back to the shared pool when they complete, developers can achieve better use of finite hardware resources. And automated tests can run overnight while resources tend to be underutilized.

xpk supports the following TPU types:

  • v4
  • v5e
  • v5p

and the following GPU types:

  • a100
  • h100

and the following CPU types:

  • n2-standard-32

Installation

To install xpk, run the following command:

pip install xpk

XPK for Large Scale (>1k VMs)

Follow user instructions in xpk-large-scale-guide.sh to use xpk for a GKE cluster greater than 1000 VMs. Run these steps to set up a GKE cluster with large scale training and high throughput support with XPK, and run jobs with XPK. We recommend you manually copy commands per step and verify the outputs of each step.

Example usages:

To get started, be sure to set your GCP Project and Zone as usual via gcloud config set.

Below are reference commands. A typical journey starts with a Cluster Create followed by many Workload Creates. To understand the state of the system you might want to use Cluster List or Workload List commands. Finally, you can cleanup with a Cluster Delete.

Cluster Create

First set the project and zone through gcloud config or xpk arguments.

PROJECT_ID=my-project-id
ZONE=us-east5-b
# gcloud config:
gcloud config set project $PROJECT_ID
gcloud config set compute/zone $ZONE
# xpk arguments
xpk .. --zone $ZONE --project $PROJECT_ID

The cluster created is a regional cluster to enable the GKE control plane across all zones.

  • Cluster Create (provision reserved capacity):

    # Find your reservations
    gcloud compute reservations list --project=$PROJECT_ID
    # Run cluster create with reservation.
    python3 xpk.py cluster create \
    --cluster xpk-test --tpu-type=v5litepod-256 \
    --num-slices=2 \
    --reservation=$RESERVATION_ID
    
  • Cluster Create (provision on-demand capacity):

    python3 xpk.py cluster create \
    --cluster xpk-test --tpu-type=v5litepod-16 \
    --num-slices=4 --on-demand
    
  • Cluster Create (provision spot / preemptable capacity):

    python3 xpk.py cluster create \
    --cluster xpk-test --tpu-type=v5litepod-16 \
    --num-slices=4 --spot
    
  • Cluster Create can be called again with the same --cluster name to modify the number of slices or retry failed steps.

    For example, if a user creates a cluster with 4 slices:

    python3 xpk.py cluster create \
    --cluster xpk-test --tpu-type=v5litepod-16 \
    --num-slices=4  --reservation=$RESERVATION_ID
    

    and recreates the cluster with 8 slices. The command will rerun to create 4 new slices:

    python3 xpk.py cluster create \
    --cluster xpk-test --tpu-type=v5litepod-16 \
    --num-slices=8  --reservation=$RESERVATION_ID
    

    and recreates the cluster with 6 slices. The command will rerun to delete 2 slices. The command will warn the user when deleting slices. Use --force to skip prompts.

    python3 xpk.py cluster create \
    --cluster xpk-test --tpu-type=v5litepod-16 \
    --num-slices=6  --reservation=$RESERVATION_ID
    
    # Skip delete prompts using --force.
    
    python3 xpk.py cluster create --force \
    --cluster xpk-test --tpu-type=v5litepod-16 \
    --num-slices=6  --reservation=$RESERVATION_ID
    

Cluster Delete

  • Cluster Delete (deprovision capacity):

    python3 xpk.py cluster delete \
    --cluster xpk-test
    

Cluster List

  • Cluster List (see provisioned capacity):

    python3 xpk.py cluster list
    

Cluster Describe

  • Cluster Describe (see capacity):

    python3 xpk.py cluster describe \
    --cluster xpk-test
    

Cluster Cacheimage

  • Cluster Cacheimage (enables faster start times):

    python3 xpk.py cluster cacheimage \
    --cluster xpk-test --docker-image gcr.io/your_docker_image \
    --tpu-type=v5litepod-16
    

Workload Create

  • Workload Create (submit training job):

    python3 xpk.py workload create \
    --workload xpk-test-workload --command "echo goodbye" --cluster \
    xpk-test --tpu-type=v5litepod-16
    

Set max-restarts for production jobs

  • --max-restarts <value>: By default, this is 0. This will restart the job "" times when the job terminates. For production jobs, it is recommended to increase this to a large number, say 50. Real jobs can be interrupted due to hardware failures and software updates. We assume your job has implemented checkpointing so the job restarts near where it was interrupted.

Workload Priority and Preemption

  • Set the priority level of your workload with --priority=LEVEL

    We have five priorities defined: [very-low, low, medium, high, very-high]. The default priority is medium.

    Priority determines:

    1. Order of queued jobs.

      Queued jobs are ordered by very-low < low < medium < high < very-high

    2. Preemption of lower priority workloads.

      A higher priority job will evict lower priority jobs. Evicted jobs are brought back to the queue and will re-hydrate appropriately.

    General Example:

    python3 xpk.py workload create \
    --workload xpk-test-medium-workload --command "echo goodbye" --cluster \
    xpk-test --tpu-type=v5litepod-16 --priority=medium
    

Workload Delete

  • Workload Delete (delete training job):

    python3 xpk.py workload delete \
    --workload xpk-test-workload --cluster xpk-test
    

    This will only delete xpk-test-workload workload in xpk-test cluster.

  • Workload Delete (delete all training jobs in the cluster):

    python3 xpk.py workload delete \
    --cluster xpk-test
    

    This will delete all the workloads in xpk-test cluster. Deletion will only begin if you type y or yes at the prompt. Multiple workload deletions are processed in batches for optimized processing.

  • Workload Delete supports filtering. Delete a portion of jobs that match user criteria. Multiple workload deletions are processed in batches for optimized processing.

    • Filter by Job: filter-by-job
    python3 xpk.py workload delete \
    --cluster xpk-test --filter-by-job=$USER
    

    This will delete all the workloads in xpk-test cluster whose names start with $USER. Deletion will only begin if you type y or yes at the prompt.

    • Filter by Status: filter-by-status
    python3 xpk.py workload delete \
    --cluster xpk-test --filter-by-status=QUEUED
    

    This will delete all the workloads in xpk-test cluster that have the status as Admitted or Evicted, and the number of running VMs is 0. Deletion will only begin if you type y or yes at the prompt. Status can be: EVERYTHING,FINISHED, RUNNING, QUEUED, FAILED, SUCCESSFUL.

Workload List

  • Workload List (see training jobs):

    python3 xpk.py workload list \
    --cluster xpk-test
    
  • Example Workload List Output:

    The below example shows four jobs of different statuses:

    • user-first-job-failed: filter-status is FINISHED and FAILED.
    • user-second-job-success: filter-status is FINISHED and SUCCESSFUL.
    • user-third-job-running: filter-status is RUNNING.
    • user-forth-job-in-queue: filter-status is QUEUED.
    • user-fifth-job-in-queue-preempted: filter-status is QUEUED.
    Jobset Name                     Created Time           Priority   TPU VMs Needed   TPU VMs Running/Ran   TPU VMs Done      Status     Status Message                                                  Status Time
    user-first-job-failed           2023-1-1T1:00:00Z      medium     4                4                     <none>            Finished   JobSet failed                                                   2023-1-1T1:05:00Z
    user-second-job-success         2023-1-1T1:10:00Z      medium     4                4                     4                 Finished   JobSet finished successfully                                    2023-1-1T1:14:00Z
    user-third-job-running          2023-1-1T1:15:00Z      medium     4                4                     <none>            Admitted   Admitted by ClusterQueue cluster-queue                          2023-1-1T1:16:00Z
    user-forth-job-in-queue         2023-1-1T1:16:05Z      medium     4                <none>                <none>            Admitted   couldn't assign flavors to pod set slice-job: insufficient unused quota for google.com/tpu in flavor 2xv4-8, 4 more need   2023-1-1T1:16:10Z
    user-fifth-job-preempted        2023-1-1T1:10:05Z      low        4                <none>                <none>            Evicted    Preempted to accommodate a higher priority Workload             2023-1-1T1:10:00Z
    
  • Workload List supports filtering. Observe a portion of jobs that match user criteria.

    • Filter by Status: filter-by-status

    Filter the workload list by the status of respective jobs. Status can be: EVERYTHING,FINISHED, RUNNING, QUEUED, FAILED, SUCCESSFUL

    • Filter by Job: filter-by-job

    Filter the workload list by the name of a job.

    python3 xpk.py workload list \
    --cluster xpk-test --filter-by-job=$USER
    

GPU usage

In order to use XPK for GPU, you can do so by using device-type flag.

  • Cluster Create (provision reserved capacity):

    # Find your reservations
    gcloud compute reservations list --project=$PROJECT_ID
    
    # Run cluster create with reservation.
    python3 xpk.py cluster create \
    --cluster xpk-test --device-type=h100-80gb-8 \
    --num-slices=2 \
    --reservation=$RESERVATION_ID
    
  • Install NVIDIA GPU device drivers

    # List available driver versions
    gcloud compute ssh $NODE_NAME --command "sudo cos-extensions list"
    
    # Install the default driver
    gcloud compute ssh $NODE_NAME --command "sudo cos-extensions install gpu"
    # OR install a specific version of the driver
    gcloud compute ssh $NODE_NAME --command "sudo cos-extensions install gpu -- -version=DRIVER_VERSION"
    
  • Run a workload:

    # Submit a workload
    python3 xpk.py workload create \
    --cluster xpk-test --device-type h100-80gb-8 \
    --workload xpk-test-workload \
    --command="echo hello world"
    

CPU usage

In order to use XPK for CPU, you can do so by using device-type flag.

  • Cluster Create (provision on-demand capacity):

    # Run cluster create with on demand capacity.
    python3 xpk.py cluster create \
    --cluster xpk-test \
    --device-type=n2-standard-32-256 \
    --num-slices=1 \
    --default-pool-cpu-machine-type=n2-standard-32 \
    --on-demand
    

    Note that device-type for CPUs is of the format -, thus in the above example, user requests for 256 VMs of type n2-standard-32. Currently workloads using < 1000 VMs are supported.

  • Run a workload:

    # Submit a workload
    python3 xpk.py workload create \
    --cluster xpk-test \
    --num-slices=1 \
    --device-type=n2-standard-32-256 \
    --workload xpk-test-workload \
    --command="echo hello world"
    

How to add docker images to a xpk workload

The default behavior is xpk workload create will layer the local directory (--script-dir) into the base docker image (--base-docker-image) and run the workload command. If you don't want this layering behavior, you can directly use --docker-image. Do not mix arguments from the two flows in the same command.

Recommended / Default Docker Flow: --base-docker-image and --script-dir

This flow pulls the --script-dir into the --base-docker-image and runs the new docker image.

  • The below arguments are optional by default. xpk will pull the local directory with a generic base docker image.

    • --base-docker-image sets the base image that xpk will start with.

    • --script-dir sets which directory to pull into the image. This defaults to the current working directory.

    See python3 xpk.py workload create --help for more info.

  • Example with defaults which pulls the local directory into the base image:

    echo -e '#!/bin/bash \n echo "Hello world from a test script!"' > test.sh
    python3 xpk.py workload create --cluster xpk-test \
    --workload xpk-test-workload-base-image --command "bash test.sh" \
    --tpu-type=v5litepod-16 --num-slices=1
    
  • Recommended Flow For Normal Sized Jobs (fewer than 10k accelerators):

    python3 xpk.py workload create --cluster xpk-test \
    --workload xpk-test-workload-base-image --command "bash custom_script.sh" \
    --base-docker-image=gcr.io/your_dependencies_docker_image \
    --tpu-type=v5litepod-16 --num-slices=1
    

Optional Direct Docker Image Configuration: --docker-image

If a user wants to directly set the docker image used and not layer in the current working directory, set --docker-image to the image to be use in the workload.

  • Running with --docker-image:

    python3 xpk.py workload create --cluster xpk-test \
    --workload xpk-test-workload-base-image --command "bash test.sh" \
    --tpu-type=v5litepod-16 --num-slices=1 --docker-image=gcr.io/your_docker_image
    
  • Recommended Flow For Large Sized Jobs (more than 10k accelerators):

    python3 xpk.py cluster cacheimage \
    --cluster xpk-test --docker-image gcr.io/your_docker_image
    # Run workload create with the same image.
    python3 xpk.py workload create --cluster xpk-test \
    --workload xpk-test-workload-base-image --command "bash test.sh" \
    --tpu-type=v5litepod-16 --num-slices=1 --docker-image=gcr.io/your_docker_image
    

More advanced facts:

  • Workload create accepts a --env-file flag to allow specifying the container's environment from a file. Usage is the same as Docker's --env-file flag

    Example File:

    LIBTPU_INIT_ARGS=--my-flag=true --performance=high
    MY_ENV_VAR=hello
    
  • Workload create accepts a --debug-dump-gcs flag which is a path to GCS bucket. Passing this flag sets the XLA_FLAGS='--xla_dump_to=/tmp/xla_dump/' and uploads hlo dumps to the specified GCS bucket for each worker.

Troubleshooting

Invalid machine type for CPUs.

XPK will create a regional GKE cluster. If you see issues like

Invalid machine type e2-standard-32 in zone $ZONE_NAME

Please select a CPU type that exists in all zones in the region.

# Find CPU Types supported in zones.
gcloud compute machine-types list --zones=$ZONE_LIST
# Adjust default cpu machine type.
python3 xpk.py cluster create --default-pool-cpu-machine-type=CPU_TYPE ...

Permission Issues: requires one of ["permission_name"] permission(s).

  1. Determine the role needed based on the permission error:

    # For example: `requires one of ["container.*"] permission(s)`
    # Add [Kubernetes Engine Admin](https://cloud.google.com/iam/docs/understanding-roles#kubernetes-engine-roles) to your user.
    
  2. Add the role to the user in your project.

    Go to iam-admin or use gcloud cli:

    PROJECT_ID=my-project-id
    CURRENT_GKE_USER=$(gcloud config get account)
    ROLE=roles/container.admin  # container.admin is the role needed for Kubernetes Engine Admin
    gcloud projects add-iam-policy-binding $PROJECT_ID --member user:$CURRENT_GKE_USER --role=$ROLE
    
  3. Check the permissions are correct for the users.

    Go to iam-admin or use gcloud cli:

    PROJECT_ID=my-project-id
    CURRENT_GKE_USER=$(gcloud config get account)
    gcloud projects get-iam-policy $PROJECT_ID --filter="bindings.members:$CURRENT_GKE_USER" --flatten="bindings[].members"
    
  4. Confirm you have logged in locally with the correct user.

    gcloud auth login
    

Roles needed based on permission errors:

  • requires one of ["container.*"] permission(s)

    Add Kubernetes Engine Admin to your user.

  • ERROR: (gcloud.monitoring.dashboards.list) User does not have permission to access projects instance (or it may not exist)

    Add Monitoring Viewer to your user.

Reservation Troubleshooting:

How to determine your reservation and its size / utilization:

PROJECT_ID=my-project
ZONE=us-east5-b
RESERVATION=my-reservation-name
# Find the reservations in your project
gcloud beta compute reservations list --project=$PROJECT_ID
# Find the tpu machine type and current utilization of a reservation.
gcloud beta compute reservations describe $RESERVATION --project=$PROJECT_ID --zone=$ZONE

TPU Workload Debugging

Verbose Logging

If you are having trouble with your workload, try setting the --enable-debug-logs when you schedule it. This will give you more detailed logs to help pinpoint the issue. For example:

python3 xpk.py workload create \
--cluster --workload xpk-test-workload \
--command="echo hello world" --enable-debug-logs

Please check libtpu logging and Tensorflow logging for more information about the flags that are enabled to get the logs.

Collect Stack Traces

cloud-tpu-diagnostics PyPI package can be used to generate stack traces for workloads running in GKE. This package dumps the Python traces when a fault such as segmentation fault, floating-point exception, or illegal operation exception occurs in the program. Additionally, it will also periodically collect stack traces to help you debug situations when the program is unresponsive. You must make the following changes in the docker image running in a Kubernetes main container to enable periodic stack trace collection.

# main.py

from cloud_tpu_diagnostics import diagnostic
from cloud_tpu_diagnostics.configuration import debug_configuration
from cloud_tpu_diagnostics.configuration import diagnostic_configuration
from cloud_tpu_diagnostics.configuration import stack_trace_configuration

stack_trace_config = stack_trace_configuration.StackTraceConfig(
                      collect_stack_trace = True,
                      stack_trace_to_cloud = True)
debug_config = debug_configuration.DebugConfig(
                stack_trace_config = stack_trace_config)
diagnostic_config = diagnostic_configuration.DiagnosticConfig(
                      debug_config = debug_config)

with diagnostic.diagnose(diagnostic_config):
	main_method()  # this is the main method to run

This configuration will start collecting stack traces inside the /tmp/debugging directory on each Kubernetes Pod.

Explore Stack Traces

To explore the stack traces collected in a temporary directory in Kubernetes Pod, you can run the following command to configure a sidecar container that will read the traces from /tmp/debugging directory.

python3 xpk.py workload create \
 --workload xpk-test-workload --command "python3 main.py" --cluster \
 xpk-test --tpu-type=v5litepod-16 --deploy-stacktrace-sidecar

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xpk-0.3.0.tar.gz (34.7 kB view details)

Uploaded Source

Built Distribution

xpk-0.3.0-py3-none-any.whl (35.3 kB view details)

Uploaded Python 3

File details

Details for the file xpk-0.3.0.tar.gz.

File metadata

  • Download URL: xpk-0.3.0.tar.gz
  • Upload date:
  • Size: 34.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for xpk-0.3.0.tar.gz
Algorithm Hash digest
SHA256 3a8eddb18efcc73b75c86a4321c6517b65bc84483b04b2bef3530c73f1d337c6
MD5 9eecf44bed9b0f5471da80e910daebf6
BLAKE2b-256 4a6669de60c4ee06e706ef2f1ec3761402cee2a276c2a11859384db7695b3f53

See more details on using hashes here.

File details

Details for the file xpk-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: xpk-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 35.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for xpk-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6dfc7d1bf34bb10b691ec1ec1d6aafa851be64776e4d9245c776cb422016e8c1
MD5 4ef9f21fdcd0607db83e917ad6d7ed78
BLAKE2b-256 8cf6a99882b98eee9392fec35ef94026f91bdf196a006df4cdba345677f3b47d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page