Skip to main content

Add your description here

Project description

xplor - Operation Research with polars

This package is heavily inspired by gurobipy-pandas but uses polars as dataframe backend.

Basic example

import xplor.gurobi as pg
import gurobipy as gp

model = gp.Model()

df = pl.DataFrame(
    {
        "i": [0, 0, 1, 2, 2],
        "j": [1, 2, 0, 0, 1],
        "u": [0.3, 1.2, 0.7, 0.9, 1.2],
        "c": [1.3, 1.7, 1.4, 1.1, 0.9],
        "obj": [2.5, 2.7, 1.2, 1.7, 3.9],
    }
)

df = (
    df
    .pipe(pg.add_vars, model, name="x", ub="u", obj = "obj", indices = ["i", "j"], vtype = gp.GRB.CONTINUOUS)
)
# shape: (5, 6)
# ┌─────┬─────┬─────┬─────┬─────┬─────────────────────┐
# │ i   ┆ j   ┆ u   ┆ c   ┆ obj ┆ x                   │
# │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ ---                 │
# │ i64 ┆ i64 ┆ f64 ┆ f64 ┆ f64 ┆ object              │
# ╞═════╪═════╪═════╪═════╪═════╪═════════════════════╡
# │ 0   ┆ 1   ┆ 0.3 ┆ 1.3 ┆ 2.5 ┆ <gurobi.Var x[0,1]> │
# │ 0   ┆ 2   ┆ 1.2 ┆ 1.7 ┆ 2.7 ┆ <gurobi.Var x[0,2]> │
# │ 1   ┆ 0   ┆ 0.7 ┆ 1.4 ┆ 1.2 ┆ <gurobi.Var x[1,0]> │
# │ 2   ┆ 0   ┆ 0.9 ┆ 1.1 ┆ 1.7 ┆ <gurobi.Var x[2,0]> │
# │ 2   ┆ 1   ┆ 1.2 ┆ 0.9 ┆ 3.9 ┆ <gurobi.Var x[2,1]> │
# └─────┴─────┴─────┴─────┴─────┴─────────────────────┘

(
    df
    .pipe(pg.apply_eval, "y = 2 * x - c")
    .group_by("i").agg(pg.quicksum("y"), pl.col("c").min())
    .pipe(pg.add_constrs, model, "y <= c", name="constr")
)
# shape: (3, 4)
# ┌─────┬────────────────────────────────┬─────┬────────────────────────┐
# │ i   ┆ y                              ┆ c   ┆ constr                 │
# │ --- ┆ ---                            ┆ --- ┆ ---                    │
# │ i64 ┆ object                         ┆ f64 ┆ object                 │
# ╞═════╪════════════════════════════════╪═════╪════════════════════════╡
# │ 1   ┆ -1.4 + 2.0 x[1,0]              ┆ 1.4 ┆ <gurobi.Constr constr> │
# │ 0   ┆ -3.0 + 2.0 x[0,1] + 2.0 x[0,2] ┆ 1.3 ┆ <gurobi.Constr constr> │
# │ 2   ┆ -2.0 + 2.0 x[2,0] + 2.0 x[2,1] ┆ 0.9 ┆ <gurobi.Constr constr> │
# └─────┴────────────────────────────────┴─────┴────────────────────────┘

model.optimize()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xplor-0.1.0.tar.gz (15.3 kB view details)

Uploaded Source

Built Distribution

xplor-0.1.0-py3-none-any.whl (2.5 kB view details)

Uploaded Python 3

File details

Details for the file xplor-0.1.0.tar.gz.

File metadata

  • Download URL: xplor-0.1.0.tar.gz
  • Upload date:
  • Size: 15.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.4.19

File hashes

Hashes for xplor-0.1.0.tar.gz
Algorithm Hash digest
SHA256 2a451e67b47277ba04869571ba0ed4166645fc41b7d31d174644050bfc198173
MD5 0a4c25f9a90da5c1b6f817863a74c333
BLAKE2b-256 ef981925ebd7e3755069ce12abebb8e013e49ecf0771d77dc7b931bddc113e10

See more details on using hashes here.

File details

Details for the file xplor-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: xplor-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 2.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.4.19

File hashes

Hashes for xplor-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2c0d5c8029e02b774c1d1cd5c61ecdda36f1641c361f6f30c16acc156454547f
MD5 5a6f3d7c198630698326d9e392c60ab0
BLAKE2b-256 a50c6d7220b68e388659e78f09ee6aea34b6e591c5249b547555273f7d984ac2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page