Skip to main content

Add your description here

Project description

xplor - Operation Research with polars

This package is heavily inspired by gurobipy-pandas but uses polars as dataframe backend.

Basic example

import xplor.gurobi as pg
import gurobipy as gp

model = gp.Model()

df = pl.DataFrame(
    {
        "i": [0, 0, 1, 2, 2],
        "j": [1, 2, 0, 0, 1],
        "u": [0.3, 1.2, 0.7, 0.9, 1.2],
        "c": [1.3, 1.7, 1.4, 1.1, 0.9],
        "obj": [2.5, 2.7, 1.2, 1.7, 3.9],
    }
)

df = (
    df
    .pipe(pg.add_vars, model, name="x", ub="u", obj = "obj", indices = ["i", "j"], vtype = gp.GRB.CONTINUOUS)
)
# shape: (5, 6)
# ┌─────┬─────┬─────┬─────┬─────┬─────────────────────┐
# │ i   ┆ j   ┆ u   ┆ c   ┆ obj ┆ x                   │
# │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ ---                 │
# │ i64 ┆ i64 ┆ f64 ┆ f64 ┆ f64 ┆ object              │
# ╞═════╪═════╪═════╪═════╪═════╪═════════════════════╡
# │ 0   ┆ 1   ┆ 0.3 ┆ 1.3 ┆ 2.5 ┆ <gurobi.Var x[0,1]> │
# │ 0   ┆ 2   ┆ 1.2 ┆ 1.7 ┆ 2.7 ┆ <gurobi.Var x[0,2]> │
# │ 1   ┆ 0   ┆ 0.7 ┆ 1.4 ┆ 1.2 ┆ <gurobi.Var x[1,0]> │
# │ 2   ┆ 0   ┆ 0.9 ┆ 1.1 ┆ 1.7 ┆ <gurobi.Var x[2,0]> │
# │ 2   ┆ 1   ┆ 1.2 ┆ 0.9 ┆ 3.9 ┆ <gurobi.Var x[2,1]> │
# └─────┴─────┴─────┴─────┴─────┴─────────────────────┘

(
    df
    .pipe(pg.apply_eval, "y = 2 * x - c")
    .group_by("i").agg(pg.quicksum("y"), pl.col("c").min())
    .pipe(pg.add_constrs, model, "y <= c", name="constr")
)
# shape: (3, 4)
# ┌─────┬────────────────────────────────┬─────┬────────────────────────┐
# │ i   ┆ y                              ┆ c   ┆ constr                 │
# │ --- ┆ ---                            ┆ --- ┆ ---                    │
# │ i64 ┆ object                         ┆ f64 ┆ object                 │
# ╞═════╪════════════════════════════════╪═════╪════════════════════════╡
# │ 1   ┆ -1.4 + 2.0 x[1,0]              ┆ 1.4 ┆ <gurobi.Constr constr> │
# │ 0   ┆ -3.0 + 2.0 x[0,1] + 2.0 x[0,2] ┆ 1.3 ┆ <gurobi.Constr constr> │
# │ 2   ┆ -2.0 + 2.0 x[2,0] + 2.0 x[2,1] ┆ 0.9 ┆ <gurobi.Constr constr> │
# └─────┴────────────────────────────────┴─────┴────────────────────────┘

model.optimize()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xplor-0.1.1.tar.gz (16.4 kB view details)

Uploaded Source

Built Distribution

xplor-0.1.1-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file xplor-0.1.1.tar.gz.

File metadata

  • Download URL: xplor-0.1.1.tar.gz
  • Upload date:
  • Size: 16.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.5.2

File hashes

Hashes for xplor-0.1.1.tar.gz
Algorithm Hash digest
SHA256 1bac4c0c3604c3cbe4aee0a3526b13dfaa2fec3f7b22c24ed9891b405126f604
MD5 aea1964cf504b0284d754935ce8f7b6a
BLAKE2b-256 a63bc7f28445a4932736aca2e4d7f5e65baa7496ac13d6d6814c08e23288d79c

See more details on using hashes here.

File details

Details for the file xplor-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: xplor-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 6.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.5.2

File hashes

Hashes for xplor-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2184aaaa0bfacfaa41985d54e982086a6ddcbffe8c3cdce7488e930d1ed86809
MD5 ebd98c2769c8bea8ddac6747af7742d2
BLAKE2b-256 53e16854f3dc52a5cfa7ccda0d9d3ccb9c941dd8b67fa868f8f0676320aa4bd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page