Skip to main content

Automated telemetry and monitoring for ML & LLM Frameworks

Project description

Welcome to xpuls.ai 👋

MLMonitor - Automatic Instrumentation for ML Frameworks

Twitter Follow Discord

PyPI version GitHub version

Roadmap 🚀

Framework Status
Langchain
LLamaIndex Planned
PyTorch Planned
SKLearn Planned
Transformers Planned
Stable Diffusion Next

💡 If support of any framework/feature is useful for you, please feel free to reach out to us via Discord or Github Discussions

🔗 Installation

  1. Install from PyPI
pip install xpuls-mlmonitor

🧩 Usage Example

from xpuls.mlmonitor.langchain.instrument import LangchainTelemetry
import os

# Enable this for advance tracking with our xpuls-ml platform
os.environ["XPULSAI_TRACING_ENABLED"] = "true"

# Add default labels that will be added to all captured metrics
default_labels = {"service": "ml-project-service", "k8s_cluster": "app0", "namespace": "dev", "agent_name": "fallback_value"}

# Enable the auto-telemetry
LangchainTelemetry(
  default_labels=default_labels,
  xpuls_host_url="http://app.xpuls.ai" # Optional param, required when XPULSAI_TRACING is enabled
).auto_instrument()

## [Optional] Override labels for scope of decorator [Useful if you have multiple scopes where you need to override the default label values]
@TelemetryOverrideLabels(agent_name="chat_agent_alpha")
def get_response_using_agent_alpha(prompt, query):
    agent = initialize_agent(llm=chat_model,
                             verbose=True,
                             agent=CONVERSATIONAL_REACT_DESCRIPTION,
                             memory=memory)

    res = agent.run(f"{prompt}. \n Query: {query}")

ℹ️ Complete Usage Guides

🧾 License

This project is licensed under the Apache License 2.0. See the LICENSE file for more details.

📢 Contributing

We welcome contributions to MLMonitor! If you're interested in contributing.

If you encounter any issues or have feature requests, please file an issue on our GitHub repository.

💬 Get in touch

👉 Join our Discord community!

🐦 Follow the latest from xpuls.ai team on Twitter @xpulsai

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xpuls-mlmonitor-0.2.0.tar.gz (19.4 kB view details)

Uploaded Source

Built Distribution

xpuls_mlmonitor-0.2.0-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file xpuls-mlmonitor-0.2.0.tar.gz.

File metadata

  • Download URL: xpuls-mlmonitor-0.2.0.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xpuls-mlmonitor-0.2.0.tar.gz
Algorithm Hash digest
SHA256 31cf5f568e0a93bd9eeeefc9ed4e5a95544ee75c23ee12a3c55f5a76b42efd03
MD5 29694a21242a22cceba0280baeb87f13
BLAKE2b-256 5d1d835482674eecfc578abffd7f853e64b8a9a401f664dcb501c2dc218ec2f6

See more details on using hashes here.

File details

Details for the file xpuls_mlmonitor-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for xpuls_mlmonitor-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cfc177be73bf9f56e47b90ee216e3b9d18e45f129fed31dd508ee4316d9a8466
MD5 5a9445f396c1fe423d5aef4bad947e0a
BLAKE2b-256 e8d99b6ec23cc3c5d4da81c64912c57a8811d52f7eab0a2dfb614ba590ad3f02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page