Retrieve and Evaluate with X(any) models
Project description
Evaluate your multimodal retrieval system with any models and datasets.
Specific inputs:
- A dataset
- A model
- A mode (e.g.
image-to-image
)
Get evaluation metrics:
- A retrieval results dataframe
- A retrieval metrics dataframe
🌟 Key Features
- ✅ Supports a wide range of models and datasets.
- ✅ Installation in one line.
- ✅ Run benchmarks with one function call.
🚀 Quickstart
import xretrieval
metrics, results_df = xretrieval.run_benchmark(
dataset="coco-val-2017",
model_id="transformers/Salesforce/blip2-itm-vit-g",
mode="text-to-text",
)
Retrieval Metrics
┏━━━━━━━━━━━━━━━┳━━━━━━━━┓
┃ Metric ┃ Score ┃
┡━━━━━━━━━━━━━━━╇━━━━━━━━┩
│ MRR │ 0.3032 │
│ NormalizedDCG │ 0.3497 │
│ Precision │ 0.2274 │
│ Recall │ 0.4898 │
│ HitRate │ 0.4898 │
│ MAP │ 0.2753 │
└───────────────┴────────┘
📦 Installation
pip install xretrieval
🛠️ Usage
List datasets:
xretrieval.list_datasets()
Available Datasets
┏━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Dataset Name ┃ Description ┃
┡━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ coco-val-2017 │ The COCO Validation Set with 5k images. │
└───────────────┴─────────────────────────────────────────┘
List models:
xretrieval.list_models()
Available Models
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ Model ID ┃ Model Input ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ transformers/Salesforce/blip2-itm-vit-g │ text-image │
│ transformers/Salesforce/blip2-itm-vit-g-text │ text │
│ transformers/Salesforce/blip2-itm-vit-g-image │ image │
│ sentence-transformers/paraphrase-MiniLM-L3-v2 │ text │
│ sentence-transformers/paraphrase-albert-small-v2 │ text │
│ sentence-transformers/multi-qa-distilbert-cos-v1 │ text │
│ sentence-transformers/all-MiniLM-L12-v2 │ text │
│ sentence-transformers/all-distilroberta-v1 │ text │
│ sentence-transformers/multi-qa-mpnet-base-dot-v1 │ text │
│ sentence-transformers/all-mpnet-base-v2 │ text │
│ sentence-transformers/multi-qa-MiniLM-L6-cos-v1 │ text │
│ sentence-transformers/all-MiniLM-L6-v2 │ text │
│ timm/resnet18.a1_in1k │ image │
└──────────────────────────────────────────────────┴─────────────┘
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
xretrieval-0.1.1.tar.gz
(11.7 kB
view details)
Built Distribution
File details
Details for the file xretrieval-0.1.1.tar.gz
.
File metadata
- Download URL: xretrieval-0.1.1.tar.gz
- Upload date:
- Size: 11.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7bd58482c0769374c7990fe4c10876036a6b860d1007b74878bfc5218e160fc |
|
MD5 | b5c19adba52b2ba96bf085b3743d07b8 |
|
BLAKE2b-256 | a8b3bc5906f49872e3d16cb480f4c14c28105ec16bbc377c4e9a9a74e977f469 |
File details
Details for the file xretrieval-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: xretrieval-0.1.1-py3-none-any.whl
- Upload date:
- Size: 13.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ddc45cfac26c115459d62dcea9633e16f7f9a760745b826bda584e0d430bee7 |
|
MD5 | 59211b02b9708560febe4d3b74c6430b |
|
BLAKE2b-256 | 183afca5347bd1eeecafc635db5281a56469c327577fdeb64c3d3eb5fdb2f7ce |