Skip to main content

Tools for working with shapefiles, topographies, and polygons in xarray

Project description

xshape

https://img.shields.io/pypi/v/xshape.svg https://img.shields.io/travis/ClimateImpactLab/xshape.svg Documentation Status Updates

Tools for working with shapefiles, topographies, and polygons in xarray

Features

  • Read a shapefile and obtain an xarray DataArray of field records

  • Draw shapefile boundaries on gridded data

  • Plot xarray DataArray data indexed by shapefile records as a choropleth

Usage

Getting records for fields in a shapefile

In [1]: import xshape

In [2]: fields, polygons = xshape.parse_shapefile(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1')

In [3]: fields
Out[3]:
<xarray.Dataset>
Dimensions:   (shape: 58)
Coordinates:
  * shape     (shape) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
Data variables:
    STATEFP   (shape) <U22 '06' '06' '06' '06' '06' '06' '06' '06' '06' '06' ...
    COUNTYFP  (shape) <U22 '107' '009' '047' '079' '097' '041' '023' '051' ...
    COUNTYNS  (shape) <U22 '00277318' '01675885' '00277288' '00277304' ...
    GEOID     (shape) <U22 '06107' '06009' '06047' '06079' '06097' '06041' ...
    NAME      (shape) <U22 'Tulare' 'Calaveras' 'Merced' 'San Luis Obispo' ...
    NAMELSAD  (shape) <U22 'Tulare County' 'Calaveras County' ...
    LSAD      (shape) <U22 '06' '06' '06' '06' '06' '06' '06' '06' '06' '06' ...
    CLASSFP   (shape) <U22 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' ...
    MTFCC     (shape) <U22 'G4020' 'G4020' 'G4020' 'G4020' 'G4020' 'G4020' ...
    CSAFP     (shape) <U22 '' '' '' '' '488' '488' '' '' '' '' '488' '472' ...
    CBSAFP    (shape) <U22 '47300' '' '32900' '42020' '42220' '41860' ...
    METDIVFP  (shape) <U22 '' '' '' '' '' '41884' '' '' '' '' '36084' '' '' ...
    FUNCSTAT  (shape) <U22 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' ...
    ALAND     (shape) <U22 '12494707314' '2641820029' '5011554680' ...
    AWATER    (shape) <U22 '37391604' '43810423' '112760479' '820974619' ...
    INTPTLAT  (shape) <U22 '+36.2288317' '+38.1846184' '+37.1948063' ...
    INTPTLON  (shape) <U22 '-118.7810618' '-120.5593996' '-120.7228019' ...

Drawing shape boundaries on gridded data

In [4]: import xarray as xr, numpy as np, xshape

# generate sample data
In [5]: da = xr.DataArray(
   ...:    np.cos((
   ...:         np.arange(41*45).reshape((41, 45)) * np.arange(41*45).reshape((45, 41)
   ...:         ).T)/4e5),
   ...:    dims=('lat', 'lon'),
   ...:    coords={
   ...:        'lon': np.linspace(-125, -114, 45),
   ...:        'lat': np.linspace(32, 42, 41)})
   ...:

In [6]: da.xshape.overlay(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1',
   ...:     cmap='YlGnBu');
   ...:
docs/images/california_map.png

Plotting regional data in a choropleth

Using the xarray extension, we can plot DataArray data directly:

In [7]: import xshape, xarray as xr, pandas as pd

In [8]: df = pd.read_csv('tests/data/datasets/co-est2016.csv', encoding='latin1')
   ...: ca = df[(df['STATE'] == 6) & (df['COUNTY'] > 0)].copy()
   ...: ca['fips'] = df['STATE'] * 1000 + df['COUNTY']
   ...: da = ca.set_index(['fips'])['POPESTIMATE2016'].to_xarray()
   ...: da.coords['GEOID'] = ('fips', ), list(map('{:05}'.format, da.fips.values))
   ...: da = da.swap_dims({'fips': 'GEOID'})

In [9]: da.xshape.plot(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1',
   ...:     cmap='YlGnBu');
   ...:
docs/images/california_map_pop.png

We can also combine the information from the fields with the data contained in the DataArray:

In [10]: land_area = (
   ....:     fields
   ....:     .set_coords('GEOID')
   ....:     .swap_dims({'shape': 'GEOID'})
   ....:     .ALAND.astype(float))

In [11]: np.log(da / land_area).xshape.plot(
   ....:     'tests/data/shapefiles/CA_counties/CA_counties',
   ....:     encoding='latin1',
   ....:     cmap='YlGnBu');
   ....:
docs/images/california_map_pop_per_m2.png

TODO

  • Use shapefiles to reshape gridded/pixel data

History

0.1.0 (2018-01-13)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xshape-0.1.0.tar.gz (3.0 MB view details)

Uploaded Source

Built Distribution

xshape-0.1.0-py2.py3-none-any.whl (9.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file xshape-0.1.0.tar.gz.

File metadata

  • Download URL: xshape-0.1.0.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for xshape-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c0aa766d233e8f9dfe54fe0cf8597c8d8baed6d1b4c6bbcd921546a3370bcbff
MD5 9a1a1bafeac501ebebb02071ee5a328d
BLAKE2b-256 5862750a9360fb9ca6d74501e8e9116b3267f6a7c4528f099664e42d1250ed61

See more details on using hashes here.

File details

Details for the file xshape-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for xshape-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 adce4b94ddeb2262b8e815096cb6f55ce2b621ad51c6f7a2d62bc59a23e31b95
MD5 21c991a7cd697586afdc39f56207a154
BLAKE2b-256 221158d87bf6fb9354e55ca6c2d4df48febd85adeb0af034ceeea7165c5a8a4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page