Skip to main content

Tools for working with shapefiles, topographies, and polygons in xarray

Project description

xshape

https://img.shields.io/pypi/v/xshape.svg https://img.shields.io/travis/ClimateImpactLab/xshape.svg Documentation Status Updates

Tools for working with shapefiles, topographies, and polygons in xarray

Features

  • Read a shapefile and obtain an xarray DataArray of field records

  • Draw shapefile boundaries on gridded data

  • Plot xarray DataArray data indexed by shapefile records as a choropleth

Usage

Getting records for fields in a shapefile

In [1]: import xshape

In [2]: fields, polygons = xshape.parse_shapefile(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1')

In [3]: fields
Out[3]:
<xarray.Dataset>
Dimensions:   (shape: 58)
Coordinates:
  * shape     (shape) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
Data variables:
    STATEFP   (shape) <U22 '06' '06' '06' '06' '06' '06' '06' '06' '06' '06' ...
    COUNTYFP  (shape) <U22 '107' '009' '047' '079' '097' '041' '023' '051' ...
    COUNTYNS  (shape) <U22 '00277318' '01675885' '00277288' '00277304' ...
    GEOID     (shape) <U22 '06107' '06009' '06047' '06079' '06097' '06041' ...
    NAME      (shape) <U22 'Tulare' 'Calaveras' 'Merced' 'San Luis Obispo' ...
    NAMELSAD  (shape) <U22 'Tulare County' 'Calaveras County' ...
    LSAD      (shape) <U22 '06' '06' '06' '06' '06' '06' '06' '06' '06' '06' ...
    CLASSFP   (shape) <U22 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' ...
    MTFCC     (shape) <U22 'G4020' 'G4020' 'G4020' 'G4020' 'G4020' 'G4020' ...
    CSAFP     (shape) <U22 '' '' '' '' '488' '488' '' '' '' '' '488' '472' ...
    CBSAFP    (shape) <U22 '47300' '' '32900' '42020' '42220' '41860' ...
    METDIVFP  (shape) <U22 '' '' '' '' '' '41884' '' '' '' '' '36084' '' '' ...
    FUNCSTAT  (shape) <U22 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' ...
    ALAND     (shape) <U22 '12494707314' '2641820029' '5011554680' ...
    AWATER    (shape) <U22 '37391604' '43810423' '112760479' '820974619' ...
    INTPTLAT  (shape) <U22 '+36.2288317' '+38.1846184' '+37.1948063' ...
    INTPTLON  (shape) <U22 '-118.7810618' '-120.5593996' '-120.7228019' ...

Drawing shape boundaries on gridded data

In [4]: import xarray as xr, numpy as np, xshape

# generate sample data
In [5]: da = xr.DataArray(
   ...:    np.cos((
   ...:         np.arange(41*45).reshape((41, 45)) * np.arange(41*45).reshape((45, 41)
   ...:         ).T)/4e5),
   ...:    dims=('lat', 'lon'),
   ...:    coords={
   ...:        'lon': np.linspace(-125, -114, 45),
   ...:        'lat': np.linspace(32, 42, 41)})
   ...:

In [6]: da.xshape.overlay(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1',
   ...:     cmap='YlGnBu');
   ...:
docs/images/california_map.png

Plotting regional data in a choropleth

Using the xarray extension, we can plot DataArray data directly:

In [7]: import xshape, xarray as xr, pandas as pd

In [8]: df = pd.read_csv('tests/data/datasets/co-est2016.csv', encoding='latin1')
   ...: ca = df[(df['STATE'] == 6) & (df['COUNTY'] > 0)].copy()
   ...: ca['fips'] = df['STATE'] * 1000 + df['COUNTY']
   ...: da = ca.set_index(['fips'])['POPESTIMATE2016'].to_xarray()
   ...: da.coords['GEOID'] = ('fips', ), list(map('{:05}'.format, da.fips.values))
   ...: da = da.swap_dims({'fips': 'GEOID'})

In [9]: da.xshape.plot(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1',
   ...:     cmap='YlGnBu');
   ...:
docs/images/california_map_pop.png

We can also combine the information from the fields with the data contained in the DataArray:

In [10]: land_area = (
   ....:     fields
   ....:     .set_coords('GEOID')
   ....:     .swap_dims({'shape': 'GEOID'})
   ....:     .ALAND.astype(float))

In [11]: np.log(da / land_area).xshape.plot(
   ....:     'tests/data/shapefiles/CA_counties/CA_counties',
   ....:     encoding='latin1',
   ....:     cmap='YlGnBu');
   ....:
docs/images/california_map_pop_per_m2.png

TODO

  • Use shapefiles to reshape gridded/pixel data

History

0.1.0 (2018-01-13)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xshape-0.1.1.tar.gz (3.0 MB view details)

Uploaded Source

Built Distribution

xshape-0.1.1-py2.py3-none-any.whl (9.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file xshape-0.1.1.tar.gz.

File metadata

  • Download URL: xshape-0.1.1.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for xshape-0.1.1.tar.gz
Algorithm Hash digest
SHA256 a7eb34e55fe8aeb31ece1dd6a679b2bdb4ebe1dd0427e3138220373ea5f56c18
MD5 022dfafeb1937c01440a36e1b10cba46
BLAKE2b-256 32bc5508489663182c16ebbc7ddec6f20e478345a67f8e017fd73938058d77ed

See more details on using hashes here.

File details

Details for the file xshape-0.1.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for xshape-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0139de2b25e1b74dfab9867776e355b02a24155c511ca53554703b1787192cf2
MD5 917a63a71f038d82ed8aad1183b39f27
BLAKE2b-256 97d800e17177ba152d832c7a043a498bd6e12a1555b7b843271c98d888fd5770

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page