Skip to main content

Utilities for training models in pytorch

Project description

xt-training

Description

This repo contains utilities for training deep learning models in pytorch, developed by Xtract AI.

Installation

From PyPI:

pip install xt-training

From source:

git clone https://github.com/XtractTech/xt-training.git
pip install ./xt-training

Usage

See specific help on a class or function using help. E.g., help(Runner).

Training a model

from xt_training import Runner, metrics
from torch.utils.tensorboard import SummaryWriter

# Here, define class instances for the required objects
# model = 
# optimizer = 
# scheduler = 
# loss_fn = 

# Define metrics - each of these will be printed for each iteration
# Either per-batch or running-average values can be printed
batch_metrics = {
    'eps': metrics.EPS(),
    'acc': metrics.Accuracy(),
    'kappa': metrics.Kappa(),
    'cm': metrics.ConfusionMatrix()
}

# Define tensorboard writer
writer = SummaryWriter()

# Create runner
runner = Runner(
    model=model,
    loss_fn=loss_fn,
    optimizer=optimizer,
    scheduler=scheduler,
    batch_metrics=batch_metrics,
    device='cuda:0',
    writer=writer
)

# Define dataset and loaders
# dataset = 
# train_loader = 
# val_loader = 

# Train
model.train()
runner(train_loader)
batch_metrics['cm'].print()

# Evaluate
model.eval()
runner(val_loader)
batch_metrics['cm'].print()

# Print training and evaluation history
print(runner)

Scoring a model

import torch
from xt_training import Runner

# Here, define the model
# model = 
# model.load_state_dict(torch.load(<checkpoint file>))

# Create runner
# (alternatively, can use a fully-specified training runner as in the example above)
runner = Runner(model=model, device='cuda:0')

# Define dataset and loaders
# dataset = 
# test_loader = 

# Score
model.eval()
y_pred, y = runner(test_loader, return_preds=True)

Data Sources

[descriptions and links to data]

Dependencies/Licensing

[list of dependencies and their licenses, including data]

References

[list of references]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xt-training-1.0.1.tar.gz (7.2 kB view details)

Uploaded Source

Built Distribution

xt_training-1.0.1-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file xt-training-1.0.1.tar.gz.

File metadata

  • Download URL: xt-training-1.0.1.tar.gz
  • Upload date:
  • Size: 7.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for xt-training-1.0.1.tar.gz
Algorithm Hash digest
SHA256 cab2129cf720539c6b21e5c9fc934e0c3af1275733ac2d3c079e37a2b722b6e8
MD5 49e330bd0cf5c02552dbee7b95c0c1a0
BLAKE2b-256 e3bd2bcf2693fbd9525e9498fd2db92e2293082f7b807d916653de9af4ca7300

See more details on using hashes here.

File details

Details for the file xt_training-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: xt_training-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for xt_training-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 45eaebd5b5c005995c388ac892af7532c9774d8c27a0359114c4a1bb64ceeee8
MD5 92deee290074bfa0fd79f73206f7f676
BLAKE2b-256 2fcb54da021cb757d6b455da319e07219a3ccdbac1d2ba39002c2bc77b4c64e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page