Skip to main content

Utilities for training models in pytorch

Project description

xt-training

Description

This repo contains utilities for training deep learning models in pytorch, developed by Xtract AI.

Installation

From PyPI:

pip install xt-training

From source:

git clone https://github.com/XtractTech/xt-training.git
pip install ./xt-training

Usage

See specific help on a class or function using help. E.g., help(Runner).

Training a model

Using xt-training (High Level)

First, you must define a config file with the necessary items. To generate a template config file, run:

python -m xt_training template path/to/save/dir

To generate template files for nni, add the --nni flag

Instructions for defining a valid config file can be seen at the top of the config file.

After defining a valid config file, you can train your model by running:

python -m xt_training train path/to/config.py /path/to/save_dir

You can test the model by running

python -m xt_training test path/to/config.py /path/to/save_dir
Using Runner (Low Level)

If you want a little more control and want to define the trianing code yourself, you can utilize the Runner like so:

from xt_training import Runner, metrics
from torch.utils.tensorboard import SummaryWriter

# Here, define class instances for the required objects
# model = 
# optimizer = 
# scheduler = 
# loss_fn = 

# Define metrics - each of these will be printed for each iteration
# Either per-batch or running-average values can be printed
batch_metrics = {
    'eps': metrics.EPS(),
    'acc': metrics.Accuracy(),
    'kappa': metrics.Kappa(),
    'cm': metrics.ConfusionMatrix()
}

# Define tensorboard writer
writer = SummaryWriter()

# Create runner
runner = Runner(
    model=model,
    loss_fn=loss_fn,
    optimizer=optimizer,
    scheduler=scheduler,
    batch_metrics=batch_metrics,
    device='cuda:0',
    writer=writer
)

# Define dataset and loaders
# dataset = 
# train_loader = 
# val_loader = 

# Train
model.train()
runner(train_loader)
batch_metrics['cm'].print()

# Evaluate
model.eval()
runner(val_loader)
batch_metrics['cm'].print()

# Print training and evaluation history
print(runner)

Scoring a model

import torch
from xt_training import Runner

# Here, define the model
# model = 
# model.load_state_dict(torch.load(<checkpoint file>))

# Create runner
# (alternatively, can use a fully-specified training runner as in the example above)
runner = Runner(model=model, device='cuda:0')

# Define dataset and loaders
# dataset = 
# test_loader = 

# Score
model.eval()
y_pred, y = runner(test_loader, return_preds=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xt-training-1.11.0.tar.gz (15.8 kB view details)

Uploaded Source

Built Distribution

xt_training-1.11.0-py3-none-any.whl (19.5 kB view details)

Uploaded Python 3

File details

Details for the file xt-training-1.11.0.tar.gz.

File metadata

  • Download URL: xt-training-1.11.0.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for xt-training-1.11.0.tar.gz
Algorithm Hash digest
SHA256 b530b02893057e95bbd5c5b511ff6de79dce895fb10d5fd3744646702fe78ec3
MD5 fd175c1961a4bda98850aa24b7c301b4
BLAKE2b-256 d396d11c44773cdc1403dfd2bb8bddbffe27c3bb5a90e490b1dab6c964634446

See more details on using hashes here.

File details

Details for the file xt_training-1.11.0-py3-none-any.whl.

File metadata

  • Download URL: xt_training-1.11.0-py3-none-any.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.3

File hashes

Hashes for xt_training-1.11.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d25d940593eb6d9bbd466218550e6592203daa23107c534f4f699c984585e1e6
MD5 dec7ea40ed01aa0ceda2ce67b6e86650
BLAKE2b-256 0d103e708b7dddd73d7086e793450f87f58ee50a104348135430c6aceffca16d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page